

Применение альтернативных моделей эллиптических кривых в криптографии на основе изогений

С. Гребнев¹, А. Тулебаев²

¹QApp ²Код безопасности

RusCrypto'2021, Москва

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ (~)

Изогении

Изогения — это рациональное отображение между двумя эллиптическими кривыми, являющееся гомоморфизмом. Если существует такого рода отображение между двумя кривыми, то они называются изогенными.

Сложность вычисления изогении степени I (т.е. с ядром мощностью I) есть O(I) операций в поле GF(p²) (при помощи **формул Велю**).

При этом для вычисления изогении гладкой степени можно воспользоваться ее декомпозицией на изогении малых степеней.

🛡 QApp 🗞 код безопасности

Формулы Велю

Пусть у² = x³ + ах + b - эллиптическая кривая над полем К. Пусть F - подгруппа E(K) порядка I. Тогда изогения с ядром F строится по следующему алгоритму.

 Разобьем F \ {𝒪} на три непересекающихся множества, F = F₂ ∪ R₊ ∪ R₋, где F₂ множество точек четного порядка, а R₊ и R₋ – разбиение множества точек нечетного порядка так, что R ∈ R₊ тогда и только тогда, когда – R ∈ R₋.

$$2$$
 Определим множество S: S $=$ F $_2 \cup$ R $_+$.

- 3) Для каждой точки Q \in S будем вычислять $g_Q^x = 3x^2x_Q + a, g_Q^y = -2y_Q$ (здесь (x_Q, y_Q) координаты точки Q); если Q = -Q, то $v_Q = g_Q^x$, иначе $v_Q = 2g_Q^x$; $u_Q = (g_Q^x)^2$
- 4 Вычислим v = $\sum_{Q \in S} v_Q; w = \sum_{Q \in S} (u_Q + x_Q v_Q).$
- 5 Коэффициенты изогенной кривой определяются как

$$\mathsf{a}' = \mathsf{a} - 5\mathsf{v};$$

$$b' = b - 7w.$$

6 Формулы преобразования координат $(x, y) \mapsto (x', y')$ имеют вид

$$x'=x+\sum_{Q\in S}\left(\frac{v_Q}{x-x_Q}+\frac{u_Q}{(x-x_Q)^2}\right),$$

Протокол SIDH

В основе протокола лежит следующая коммутативная диаграмма:

$$\begin{array}{cccc}
\mathsf{E} & \stackrel{\varphi}{\longrightarrow} & \mathsf{E}/\langle\mathsf{P}\rangle \\
\psi & & & \downarrow \\
\mathsf{E}/\langle\mathsf{Q}\rangle & \stackrel{\longrightarrow}{\longrightarrow} & \mathsf{E}/\langle\mathsf{P},\mathsf{Q}\rangle
\end{array}$$
(1)

где φ, ψ – случайные пути в графах изогений степеней $2^{\mathbf{e}_{\mathsf{A}}}, 3^{\mathbf{e}_{\mathsf{B}}}$ соответственно.

F

Таким образом, нас интересуют эффективные аналоги формул Велю для степеней 2, 3 и 4.

・ロト・(部ト・モト・モー・)への

Формулы Велю для 2-и 3-изогений

2-изогении

Пусть P = (x_P, 0) – точка порядка 2 на E_{a,b}(GF(p²)). Положим v = $3x_P^2$ + a, a' = a – 5v, b' = b – 7vx_P; тогда отображение

$$(\mathbf{x}, \mathbf{y}) \mapsto \left(\mathbf{x} + \frac{\mathbf{v}}{\mathbf{x} - \mathbf{x}_{\mathsf{P}}}, \mathbf{y} - \frac{\mathbf{v}\mathbf{y}}{(\mathbf{x} - \mathbf{x}_{\mathsf{P}})^2}\right)$$

задает 2-изогению из $E_{a,b}$ в $E_{a',b'}$ с ядром $\langle \mathsf{P}\rangle.$

・ロト ・ 日 ・ ・ 田 ト ・ 日 ・ ・ 日 ・ ・ 日 ・

Формулы Велю для 2-и 3-изогений

うつん 川 エキャイドャイビッ

З-изогении

Пусть P = (x_P, y_P) – точка порядка 3 на $E_{a,b}(GF(p^2))$. Положим v = $2(3x_P^2 + a)$, u = $4y_P^2$, a' = a – 5v, b' = b – $7(u + vx_P)$; тогда отображение

$$(x,y)\mapsto \left(x+\frac{v}{x-x_{\mathsf{P}}}+\frac{u}{(x-x_{\mathsf{P}})^2}, y\left(1-\frac{v}{(x-x_{\mathsf{P}})^2}-\frac{2u}{(x-x_{\mathsf{P}})^3}\right)\right)$$

задает 3-изогению из $E_{a,b}$ в $E_{a',b'}$ с ядром $\langle \mathsf{P}\rangle.$

Кривая Монтгомери задается уравнением

$$M_{A,B}(GF(p)): By^2 = x^3 + Ax^2 + x$$
, где $B(A^2 - 4) \neq 0.$ (2)

Пусть m>n>0, $\mathsf{P}=(\mathsf{X}_1:\mathsf{Y}_1:\mathsf{Z}_1)\in\mathsf{M}_{\mathsf{A},\mathsf{B}},$ известны кратные точки $\mathsf{P}_n=n\mathsf{P},$ $\mathsf{P}_m=m\mathsf{P},$ $\mathsf{P}_{m-n}=(m-n)\mathsf{P}.$ Тогда имеют место формулы

$$\begin{split} X_{m+n} &= Z_{m-n}((X_m-Z_m)(X_n+Z_n) + (X_m+Z_m)(X_n-Z_n))^2 \\ Z_{m+n} &= X_{m-n}((X_m-Z_m)(X_n+Z_n) + (X_m+Z_m)(X_n-Z_n))^2 \end{split}$$

$$\begin{split} 4X_nZ_n &= (X-n+Z_n)^2 - (X_n-Z_n)^2 \\ X_{2n} &= X-n+Z_n)^2 (X_n-Z_n)^2 \\ Z_{2n} &= 4X_nZ_n ((X_n-Z_n)^2 + ((A+2)/4)(4X_nZ_n)) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Кривые Монтгомери

< □ ▶ < □ ▶ < □ ▶ < □ ▶ . □ ● . ○ < ○

Эффективная арифметика в XZ–проективных координатах

Алгоритм	Сложность		
Сложение	5M + 2S		
Удвоение	3M + 2S		
Утроение	8M + 4S		
C. Costello, B. Smith, 2017)			

QApp 😚 код безопасности Кривые Эдвардса и Хаффа

Проективные координаты Эдвардса

Точка (x, y) на кривой Эдвардса представляется в виде тройки (X : Y : Z) такой, что $(X^2 + Y^2)Z^2 = Z^4 + dX^2Y^2$, (x, y) = (X/Z, Y/Z). Нейтральный элемент группы точек имеет координаты (0 : 1 : 1). Обратным элементом к точке (X : Y : Z) является точка (-X : Y : Z).

Алгоритм	Сложность		
Сложение	10M + 1S + 1 * c + 1 * d		
Удвоение	3M + 4S + 3 * C		
Утроение	9M + 4S + 1 * C		
(http://hyperelliptic.org/EFD/)			

Вводится рациональная функция $w(x, y) = \frac{1}{xy}$; c = a/b;

$$\begin{split} \mathbf{w}_{2\mathsf{P}} &= \frac{(\mathsf{w}_{\mathsf{P}}^2 - 1)^2}{4\mathsf{w}_{\mathsf{P}}(\mathsf{w}_{\mathsf{P}} + \mathsf{C})(\mathsf{w}_{\mathsf{P}} + 1/\mathsf{C})}\\ \\ \mathbf{w}_{\mathsf{P}+\mathsf{Q}} &= \frac{(\mathsf{w}_{\mathsf{P}}\mathsf{w}_{\mathsf{Q}} - 1)^2}{(\mathsf{w}_{\mathsf{P}} - \mathsf{w}_{\mathsf{Q}})\mathsf{w}_{\mathsf{P}-\mathsf{Q}}} \end{split}$$

В проективных w-координатах имеем

	Алгоритм	Сложность	
	Сложение	3M + 2S	
	Удвоение	2M + 2S + C	
	Утроение	7M + 5S	
(Huan	g Y., Zhang F.	., Hu Z., Liu Z.,	2020)

Кривые Монтгомери

2-изогении

Пусть R – точка порядка 2 на кривой M_{A,B}, x_R $\neq 0$, и пусть $\phi_2 : M_{A,B} \rightarrow M_{A',B'} - единственная (с точностью до изоморфизма) 2-изогения с ядром <math>\langle R \rangle$, тогда параметры кривой M_{A',B'} вычисляются по формуле

$$(\mathsf{A}',\mathsf{B}') = \left(2 \cdot (1 - 2\mathsf{x}_{\mathsf{R}}^2),\mathsf{B}\mathsf{x}_{\mathsf{R}}\right). \tag{3}$$

Если Q – точка на кривой $M_{A,B}$, Q $ot\in$ ker (ϕ_2) , то ее образ $Q' = \phi_2(Q) \in M_{A',B'}$ вычисляется как

$$\begin{split} x_{Q'} &= \frac{x_Q^2 x_R - x_Q}{x_Q - x_R}, \\ y_{Q'} &= y_Q \cdot \frac{x_Q^2 x_R - 2 x_Q x_R^2 + x_R}{(x_Q - x_R)^2}. \end{split}$$
(4)

4-изогении

Пусть R – точка порядка 4 на кривой M_{A,B}, x_R $\neq \pm 1$, и пусть $\phi_4 : M_{A,B} \rightarrow M_{A',B'}$ — единственная (с точностью до изоморфизма) 4-изогения с ядром $\langle R \rangle$, тогда параметры кривой M_{A',B'} вычисляются по формуле

$$(\mathsf{A}',\mathsf{B}') = \left(4\mathsf{x}_{\mathsf{R}}^4 - 2, -\mathsf{x}_{\mathsf{R}}(\mathsf{x}_{\mathsf{R}}^2 + 1) \cdot \mathsf{B}/2\right). \tag{5}$$

Если Q – точка на кривой $M_{A,B}$, Q $ot\in$ ker (ϕ_4) , то ее образ Q' = $\phi_4(Q) \in M_{A',B'}$ вычисляется как

Кривые Монтгомери

$$\begin{split} x_{Q'} &= \frac{-(x_Q x_R^2 + x_Q - 2x_R) x_Q (x_Q x_R - 1)^2}{(x_Q - x_R)^4 (2x_Q x_R - x_R^4 - 1)}, \\ y_{Q'} &= y_Q \cdot \frac{-2x_R^2 (x_Q x_R - 1) x_Q^4 (x_R^2 + 1) - 4x_Q^3 (x_R^3 + x_R) + 2x_Q^2 (x_R^4 + 5x_R^2) - 4x_Q (x_R^3 + x_R) + x_R^2 + 1}{(x_Q - x_R)^3 (2x_Q x_R - x_R^4 - 1)^2}. \end{split}$$
(6)

3-изогении

Пусть R – точка порядка 3 на кривой M_{A,B}, и пусть $\phi_3: M_{A,B} \to M_{A',B'}$ — единственная (с точностью до изоморфизма) 3-изогения с ядром $\langle R \rangle$, тогда параметры кривой M_{A',B'} вычисляются по формуле

$$(A', B') = \left((Ax_{R} - 6x_{R}^{2} + 6)x_{R}, Bx_{R}^{2} \right).$$
(7)

Если Q – точка на кривой $M_{A,B}$, Q $ot\in$ ker (ϕ_3) , то ее образ $Q' = \phi_3(Q) \in M_{A',B'}$ вычисляется как

$$\begin{split} x_{Q'} &= \frac{x_Q (x_Q x_R - 1)^2}{(x_Q - x_R)^2}, \\ y_{Q'} &= y_Q \cdot \frac{(x_Q x_R - 1) (x_Q^2 x_R - 3 x_Q x_R^2 + x_Q + x_R)}{(x_Q - x_R)^3}. \end{split}$$
 (8)

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Кривые Эдвардса

Пусть E_d – кривая Эдвардса над полем K, γ , δ , i – элементы K либо его алгебраического расширения такие, что $\gamma^2 = 1 - d$, $\delta^2 = d$, $i^2 = -1$. Тогда существуют 2-изогении с кривой E_d, заданные отображениями ψ_1, ψ_2, ψ_3 :

$$\psi_1 : (\mathbf{x}, \mathbf{y}) \mapsto \left((\gamma \mp 1)\mathbf{x}\mathbf{y}, \frac{(\gamma \mp 1)\mathbf{y}^2 \pm 1}{(\gamma \mp 1)\mathbf{y}^2 \mp 1} \right).$$
 (9)

Образ кривой Е_д при этом отображении задается уравнением

🗍 QApp 🚓 КОД

$$\mathsf{E}_{\hat{\mathsf{d}}}: \mathsf{x}^2 + \mathsf{y}^2 = 1 + \hat{\mathsf{d}}\mathsf{x}^2\mathsf{y}^2 \tag{10}$$

при $\hat{d} = \left(\frac{\gamma \pm 1}{\gamma \mp 1}\right)^2$. $\psi_2 : (\mathbf{x}, \mathbf{y}) \mapsto \left((i\gamma \pm \delta)\frac{\mathbf{x}}{\mathbf{y}}, -\frac{\delta \mathbf{y}^2 \mp i\gamma - \delta}{\delta \mathbf{y}^2 \pm i\gamma - \delta}\right).$ (11)

Образ кривой Ed при этом отображении задается уравнением

$$E_{\hat{d}}: x^2 + y^2 = 1 + \hat{d}x^2y^2$$
(12)

при
$$\hat{d} = \left(\frac{i\gamma \mp \delta}{i\gamma \pm \delta}\right)^2$$
.
 $\psi_3 : (\mathbf{x}, \mathbf{y}) \mapsto \left((i\delta \mp 1) \frac{\mathbf{x}}{\mathbf{y}} \frac{1 - d\mathbf{y}^2}{1 - d}, \frac{d \mp \delta}{d \pm \delta} \frac{\delta \mathbf{y}^2 \pm 1}{\delta \mathbf{y}^2 \mp 1} \right).$
(13)

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 三 - のへで

Кривые Эдвардса

Образ кривой Ed при этом отображении задается уравнением

$$E_{\hat{d}}: x^2 + y^2 = 1 + \hat{d}x^2y^2 \tag{14}$$

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

при $\hat{d} = \left(\frac{\delta \pm 1}{\delta \mp 1}\right)^2$.

Вычисление 2-изогенной кривой Эдвардса требует вычисления квадратного корня в поле, однако, этого можно избежать, используя 4-изогении.

Кривые Эдвардса

Пусть F – подгруппа кривой Эдвардса нечетного порядка I = 2s + 1,

$$\mathsf{F} = \{(0, 1), (\pm \alpha_1, \beta_1), \dots, (\pm \alpha_{\mathsf{S}}, \beta_{\mathsf{S}})\}.$$

Положим

$$\psi(\mathsf{P}) = \left(\prod_{\mathsf{Q}\in\mathsf{F}} \frac{\mathsf{x}_{\mathsf{P}+\mathsf{Q}}}{\mathsf{y}_{\mathsf{Q}}}, \prod_{\mathsf{Q}\in\mathsf{F}} \frac{\mathsf{y}_{\mathsf{P}+\mathsf{Q}}}{\mathsf{y}_{\mathsf{Q}}}\right).$$

Тогда ψ – I-изогения с ядром F, отображающая кривую E_d в E_d, при $\hat{d} = B^8 d^I$, B = $\prod_{i=1}^s \beta_i$. Также при этом имеем

$$\psi(\mathbf{x},\mathbf{y}) = \left(\frac{\mathbf{x}}{\mathsf{B}^2} \prod_{i=1}^{s} \frac{\beta_i^2 \mathbf{x}^2 - \alpha_i^2 \mathbf{y}^2}{1 - \mathsf{d}^2 \alpha^2 \beta^2 \mathbf{x}^2 \mathbf{y}^2}, \frac{\mathbf{y}}{\mathsf{B}^2} \prod_{i=1}^{s} \frac{\beta_i^2 \mathbf{y}^2 - \alpha_i^2 \mathbf{x}^2}{1 - \mathsf{d}^2 \alpha^2 \beta^2 \mathbf{x}^2 \mathbf{y}^2}\right).$$
(15)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Кривые Хаффа

Пусть F – подгруппа кривой Хаффа $H_{a,b}: ax(y^2-1) = by(x^2-1)$ нечетного порядка I = 2s+1,

$$\mathsf{F} = \{(0,0), (\alpha_1, \beta_1), (-\alpha_1, -\beta_1) \cdots : \mathsf{i} = 1, \dots, \mathsf{s}\},\$$

 $\mathsf{A} = \prod_{i=1}^{\mathsf{s}} \alpha_i$, $\mathsf{B} = \prod_{i=1}^{\mathsf{s}} \beta_i$. Положим

$$\psi(\mathsf{P}) = \left(\mathsf{x}_{\mathsf{P}} \prod_{\mathsf{Q} \in \mathsf{F}, \mathsf{Q} \neq (0,0)} \frac{-\mathsf{x}_{\mathsf{P}+\mathsf{Q}}}{\mathsf{x}_{\mathsf{Q}}}, \mathsf{y}_{\mathsf{P}} \prod_{\mathsf{Q} \in \mathsf{F}, \mathsf{Q} \neq (0,0)} \frac{-\mathsf{y}_{\mathsf{P}+\mathsf{Q}}}{\mathsf{y}_{\mathsf{Q}}}\right)$$

Тогда ψ – I-изогения с ядром F, отображающая кривую $\mathsf{H}_{a,b}$ в $\mathsf{H}_{\hat{a},\hat{b}}$ при $\hat{a}=a^{j}\mathsf{B}^{4}, \hat{b}=b^{j}\mathsf{B}^{4}.$ Также при этом имеем

$$\psi(\mathbf{x}, \mathbf{y}) = \left(\frac{\mathbf{x}}{\mathsf{A}^2} \prod_{i=1}^{s} \frac{\alpha_i^2 - \mathbf{x}^2}{1 - \mathsf{b}^2 \alpha_i^2 \mathbf{x}^2}, \frac{\mathbf{y}}{\mathsf{B}^2} \prod_{i=1}^{s} \frac{\beta_i^2 - \mathbf{y}^2}{1 - \mathsf{a}^2 \beta_i^2 \mathbf{y}^2}\right).$$
(16)

Эта формула верна для точек, не являющихся бесконечно удаленными. Пусть $\eta \in \overline{K}$ – такой элемент, что $\eta^2 = ab$. Тогда 2-изогения кривой Хаффа H_{a,b} в H_{â,b} при â = $-(a + 2\eta + b)$, $\hat{b} = -(a - 2\eta + b)$ задается как

$$(x,y)\mapsto \left(\frac{bx-ay}{(b-a)^2}\frac{\left((bx-ay)+\eta(x-y)\right)^2}{bx^2-ay^2},\frac{bx-ay}{(b-a)^2}\frac{\left((bx-ay)-\eta(x-y)\right)^2}{bx^2-ay^2}\right)$$

<ロト < 団 ト < 三 ト < 三 ト = 三 のへの</p>

Выводы

	Модель		
	Монтгомери	Эдвардса	Хаффа
3-изогенная	2M + 3S	4M + 2S	2M + 3S
кривая			
3-изогения	4M + 2S	5M + 4S	4M + 2S
4-изогенная	4 S	4M + 3S	4 S
кривая			
4-изогения	6M + 2S	6M + 2S	6M + 2S

Спасибо за внимание.

sg@qapp.tech a.tulebaev@securitycode.ru