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INTRODUCTION

0.0. Statement of the Problem

Although this work is of a purely mathematical nature, its source was an applied problem, and therefore
I deem it necessary to give some preliminary remarks, which motivate the statement of the mathematical
problem considered in the work. Since the remarks concern applications, I permit myself not to use math-
ematical formalism here and give all exact formulations and definitions in the next sections. The problem
mentioned above can be formulated as follows: how to write a program for a computer which would quickly
generate random numbers?

It stands to reason that randomness must be understood here in a purely “Pickwick” sense, namely,
in the sense used by Knuth in the third chapter of his famous book The Art of Computer Programming

[8]. In this monograph, the reader will also find examples of various fields where this kind of problem is

encountered. Their list can be complemented by one more field, cryptography. However, the aim of this work

is not cryptographic applications (although the results given below can certainly be used in this field), but

the construction of a mathematical theory that would refer, generally speaking, to the theory of uniformly
distributed sequences on algebraic systems. Computer programs, “random” number generators, can indeed be
written with the use of the results obtained if we understand a “random” sequence as a uniformly distributed
sequence. Knuth, in his monograph, treats “random” numbers precisely in this sense.

In the same book, Knuth states that the best known (at the time the book was written) random number

generators are generators of the sequences {zi} of elements of the set {0, 1, 2, . . . ,m−1} with recursion laws of

the form zi ≡ azi−1 + b (modm), where a, b are integers. In this case, the uniform distribution of the sequence

{zi} means that this sequence is periodic with period m, and each element of the set {0, 1, 2, . . . ,m − 1} is

encountered on the period exactly once. Thus, the main problem is to find conditions imposed on a, b under

which the sequence {zi} has period m. These conditions are given by Theorem A from Sec. 3.2.1.2 of the

monograph mentioned above, which serves as a mathematical basis of the so-called linear congruent method
of constructing random number program generators.

It pays to view this example from algebraic positions. First, the operations (commands) of the processor

which are used to generate random numbers are regarded as operations of a certain algebraic system A. (In

this example, A can be regarded either as a cyclic group of order m relative to the operation“+” or as a

residue class ring modulo m.) Second, any uniformly distributed sequence of elements of A of the form

z0, z1 = f(z0), . . . , zi = f(zi−1) = f i(z0) = f(f(. . . f︸ ︷︷ ︸
i times

(z0) . . .)), . . . ,
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where f is a polynomial over A, is considered to be “random.” The main problem is to describe the polynomials
f which ensure the uniform distribution of the corresponding sequence.

This work is a review of the results connected with the construction of uniformly distributed sequences
over algebraic systems as recurrent sequences, the laws of whose recursion are defined by polynomials over
these systems. However, the choice of algebraic systems considered in this work was dictated by considerations
of applications, namely, algebraic systems which are customary for computer algebra are considered, i.e.,
simulating systems of commands of some kind of processors.

A typical processor processes information presented by words of a fixed length in some alphabet. If
V is the set of all the words and Ω is the list of commands of the processor, i.e., some set of functions
defined on V and assuming values in V , then the processor is naturally associated with the universal algebra

A = 〈V,Ω〉 with supporter V and signature Ω. Since a computer program is an ordered collection of commands

successively applied to the running values of the operands, every collection-command of this kind defines the

function F = (f1, . . . , fm): A(n) → A(m) of n arguments whose values are collections of m elements from

A (which can be regarded as elements from A(n), the nth direct power of the universal algebra A, i.e.,

the direct product of n isomorphic copies of A). In this case, the components f1, . . . , fm of the function

F are polynomials in the variables x1, . . . , xn over A since a polynomial over the universal algebra A is a
composition of the characters of the operations from Ω, the constants from V , and the variables. From this
point of view, the problem of writing a program generator of “random” numbers consists in constructing the

corresponding polynomials over A (namely, components f1, . . . , fn such that the sequence a, F (a), F (F (a)), . . .

of elements from A(n) is uniformly distributed over A(n)) and, consequently, refers to the polynomial algebra

whose principal concepts can be found in [21]. Then the performance of the program is determined by

the complexity of the polynomials as compositions of operations and the performance of carrying out the
operations appearing in these polynomials.

It stands to reason that the solution of such a problem of polynomial algebra in the general statement is
impossible since it is necessary to impose some constraints on the universal algebra A. Then we run the risk
of losing some cases that are most interesting for applications. Therefore, let us see what universal algebras
can simulate the systems of processor commands in the sense mentioned above.

As a rule, the list of processor commands includes as least one group operation. For instance, the list of

commands (to be more precise, the assembler) of the Intel 80∗86 processor includes the operation of addition

in the Z/2n and the operation of addition of n-dimensional vectors over the field GF (2), where n is the

word length of the processor. All the more so, the languages of higher-degree programming contain group
operations as the main operations. Let us stipulate that in our sense it is natural to regard as a processor

not the integral microcircuit itself but a certain language of programming (or even its compilator) since any

program was first written in some language and then was compiled. In this case, the “list of commands” is

interpreted as a collection of principal (“elementary”) procedures of the language.

We can thus consider the universal algebra A to be a group whose signature is complemented by some

additional operations, i.e., A is a group with multioperators according to the terminology of Kurosh [11]. The

lists of these additional operations will be elucidated below since they are different for different processors.
We can now say, however, that the most important for applications are the cases where A is a finite associative

and commutative ring or a finite group with a certain (possibly, empty) set of operators. Indeed, the list of

commands of a processor contains, as a rule, besides addition, multiplication (then we deal with a ring) and

commands interpreted as linear operators (shifts, for instance). In turn, the universal algebras most often

encountered in applications are those which are of order 2n, since the typical microcircuit, i.e., the processor
of a modern computer, executes operations with information presented by words of length n in the alphabet

{0, 1}.
Thus, we consider a certain finite group A with multioperators and a certain polynomial function F =

(f1, . . . , fn): A(n) → A(n) (i.e., f1, . . . , fn are polynomials in the variables x1, . . . , xn over A). What conditions

must be satisfied by F for the sequence a, F (a), F (F (a)), . . . of elements from A(n) to be uniformly distributed

over A(n), i.e., to have a period of length |A|n, every element from A(n) occuring exactly once on this period? We
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say that these functions are ergodic. In the final analysis, we have to obtain the description of all polynomial
ergodic functions over each of the universal algebras of the class being considered and all polynomials that
define these functions. However, since the existence of a polynomial ergodic function over a universal algebra
strongly restricts the possible structure of the latter, we must first describe the universal algebras from the
given class which admit of polynomial ergodic functions.

We can generalize somewhat the technique of constructing “random” numbers by considering uniformly

distributed sequences of the form {ψ(F i(a))}, where F is an ergodic polynomial function and ψ:A(n) → A(m)

is a polynomial function. Then the problem arises of finding the conditions which must be satisfied by ψ for

the sequence {ψ(F i(a))} to be uniformly distributed for the ergodic F . Clearly, if all points from A(m) have

the same number of ψ-co-images in A(n) (we say that these functions are equiprobable), then the sequence

{ψ(F i(a))} is uniformly distributed for any ergodic F . Thus the problem arises of describing equiprobable

polynomial functions over universal algebras from the class under consideration. In the special case m = n, it
consists in describing bijective polynomial functions.

Finally, if we denote the group operation in A by +, the neutral element by 0, and the inverse of a

relative to this operation by −a, then it is clear that two polynomials f(x1, . . . , xn) and g(x1, . . . , xn) over A

define the same function if and only if the polynomial h(x1, . . . , xn) = f(x1, . . . , xn) − g(x1, . . . , xn) assumes

the value 0 at all points from An. We call polynomials h with this property mixed identities over A. Thus,

when describing ergodic or equiprobable polynomials (i.e., polynomials that define ergodic or equiprobable

functions respectively), we have to consider the facts connected with the description of mixed identities over

a given universal algebra. Note that for applications especially significant is the description of ergodic and
equiprobable polynomials themselves and not only the functions they define, since the complexity of the
program realization of the same function is defined by its specific polynomial representation used in the
listing of the program.

The problems mentioned above differ in their mathematical nature. The problem of describing universal
algebras that admit of ergodic polynomial functions is a typical algebraic problem of classification of universal
algebras by some property. Problems of this kind are frequently encountered in the theory of finite groups
and finite rings and reduce to studying the corresponding universal algebras with restrictions to subalgebras
or quotient algebras. The description of mixed identities of a given universal algebra is a problem close in
ideology to the theory of varieties of universal algebras, since identities can be regarded as mixed identities
without coefficients. As to the description of polynomial ergodic or equiprobable functions over universal
algebras that correspond, in the sense indicated above, to the majority of types of processors, this problem,
strange as it may seem at first glance, is from a different field of mathematics, namely, the non-Archimedean
analysis. Here is an example elucidating the last thesis, which is most important for applications.

Let us consider an n-digit processor that operates with words of length n in the alphabet {0, 1}, which

we shall interpret in the sequel as numbers from the set Z/2n = {0, 1, 2, 3, . . . , 2n − 1} written in a binary

system. As a rule, the standard collection of commands of such a processor contains arithmetic operations

(the addition ⊕ and multiplication � which are, respectively, the addition and the multiplication in a ring of

integers with subsequent reduction of the result to modulo 2n), bit-by-bit logical operations of the type OR,

XOR, AND, and computer operations of the type of left and right shifts SHL and SHR. This processor is
associated with the universal algebra

A = 〈Z/2n, {⊕,�,XOR,OR,AND, SHL, SHR}〉.
Its operations (i.e., commands of the processor) admit of simple and natural extensions to the set N0

of nonnegative rational integers. However, relative to the 2-adic metric, the latter is an everywhere dense
subset in the compact space Z2 of all 2-adic integers. The most remarkable fact here is that the corresponding

extensions of the above-mentioned operations are continuous (and, hence, uniformly continuous) functions on

Z2. Consequently, the polynomial functions over A can also be extended to uniformly continuous functions
on Z2.

This approach makes it possible to establish correspondences between “discrete” and “continuous” prop-
erties of some classes of functions. For instance, from this point of view functions known as determinate
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functions in the theory of automata turn out to be exactly those functions which satisfy the Lipschitz con-

dition with coefficient 1. There is also a correspondence between bijective functions on the Z/2n and 2-adic

functions that preserve the Haar measure; between maximal period sequences, generated by congruent gener-
ators, and uniformly distributed sequences of 2-adic integers; between ergodic polynomials over the universal
algebra A and functions, ergodic with respect to the Haar measure, on the ring Z2 of 2-adic integers. It appears
that these correspondences are not anything external; they demonstrate the non-Archimedean essence of com-

puter commands. It is usually possible to regard the list of commands of a processor (or a considerable part

of it) as a set of uniformly continuous 2-adic functions and, having proved by means of the non-Archimedean

analysis a certain statement concerning a definite composition of these functions, to obtain a statement con-
cerning the corresponding computer program. In this work, this approach is demonstrated by way of example
of program generators of random numbers. However, I am sure that it can be successfully used for solving
other programming problems or problems of computer algebra.

Thus, the above-formulated problem of describing ergodic (or equiprobable) polynomials over universal

algebras being considered can be reduced to the description of functions continuous on Z2, ergodic or equiprob-
able relative to the Haar measure. In this paper, this problem is studied as applied to a more general situation
of functions on a ring of p-adic integers Zp, where p is an arbitrary prime number.

In the example given above, we can regard the universal algebra A = 〈Z/2n, {⊕,�,XOR,OR,AND, SHL,

SHR}〉 corresponding to the processor as an Abelian group with multioperators (we can take ⊕ or XOR as

a group operation). However, we can encounter situations in applications where the universal algebra is a

non-Abelian group with multioperators, especially if the realization of a certain operation depends on the
value of the one-bit register, a “flag.” For instance, if the flag is equal to 0, then addition is carried out, and

if it is 1, then subtraction is carried out. In this way, the ∗ operation of the non-Abelian group appears (in

this example, an operation of dihedral group): if ε, ξ are the values of the flag, a, b are n-bit words in the

alphabet {0, 1}, then (ε, a) ∗ (ξ, b) = (ε + ξ, b ⊕ (−1)ξa), where ⊕ is addition modulo 2. As is customary in

algebra, a commutative and a noncommutative case must be considered separately, and therefore this work is
divided into two chapters which correspond to these two cases. Both cases are studied in the same sequence,
i.e., first groups with multioperators are classified that admit of ergodic polynomial functions, and then the

functions themselves are described (as well as equiprobable polynomial functions), which often leads to the

necessity of describing mixed identities. The last problem in the commutative case does not usually present
any difficulties. However, in order to describe mixed identities of non-Abelian groups with multioperators we
must develop a special apparatus close, in essence, to the theory of varieties of universal algebras.

On the whole, we can call the sum of the results of this work, connected with the description of ergodic
polynomial functions, the theory of nonlinear congruent generators, especially if we compare them with the

above-mentioned criterion of ergodicity of a linear polynomial over the Z/m [8, Theorem A, Sec. 3.2.1.2]. The

latter result (which goes back to Lehmer) admits of the following equivalent formulation: a linear polynomial

with integer coefficients induces an ergodic function on the ring Z/pm, m ≥ 2, where p is a prime number, if

and only if it induces an ergodic function on the ring Z/p2. This proved to be a typical situation. As a rule, the

polynomial f over the universal algebra 〈Z/pm,Ω〉 induces an ergodic function for all sufficiently large m if it

is ergodic for some m = m0(f). (Note that a similar situation occurs with equiprobability and biinjectivity.)

Consequently, the problem consists in finding m0(f) for one or another class of polynomials f . Thus, we can

regard this group of results of this work as generalizations of the indicated Lehmer theorem to the case of

arbitrary-degree polynomials and over different universal algebras (and not only residue rings). In particular,

we consider arbitrary-degree polynomials with integer coefficients, polynomials with rational coefficients that
assume integer values at integer points, rational functions with the same property, polynomials over the

universal algebra A = 〈Z/2n, {⊕,�,XOR,OR,AND, SHL, SHR}〉, and others. Here is a typical result, for

example: the function f(x)
1+2g(x)

(where f(x), g(x) are polynomials with rational integer coefficients) is ergodic

on the ring Z/2n, n ≥ 3, if and only if it induces an ergodic function modulo 8. By the way, generators

with this recursion law can be easily realized as a program since they only use the operations of addition,

4



multiplication, and taking the inverse element modulo 2n.
Finally, the remark last in order but not in significance. By no means do I insist on constructing good

program generators of random numbers only by the methods described in this paper. There are many other

well-developed methods; the reader can find them, for instance, in [15, 24, 25]. However, to my mind, the

theory presented below is of interest since it demonstrates how, in the process of solving an applied problem,
different and seemingly nonintersecting divisions of mathematics suddenly merge into some logical whole,
revealing unexpected connections. In some cases, purely theoretical concepts prove to have a “physical mean-
ing” as some model of the real environment. Hensel began studying p-adic numbers more than half a century
before the first microchip appeared, and the fact that the commands of the latter could be represented by
continuous functions on the space of p-adic integers is one more example of the “incomprehensible effectiveness

of mathematics” (M. Kline [7]).

0.1. Preliminaries

Uniformly distributed sequences on topological groups. Before speaking of the uniform distribution of
a sequence on a universal algebra, we must define a measure on this algebra. All universal algebras considered
in this paper are groups with multioperators, and we shall assume that they are compact topological groups.
This constraint by no means restricts the class of groups that are interesting for applications, since it is
satisfied by all finite groups as well as infinite groups, which are encountered in this work when uniformly
distributed sequences are studied on finite groups with multioperators. A natural, Haar measure, exists on
a compact topological group whose definition can be found in any book on topological groups, and therefore
we omit its general form but will only formulate it for special cases which we shall consider. Here are some

necessary concepts and main definitions from the theory of uniformly distributed sequences (see [6]).

Suppose that A is a compact topological group and µ is its Haar measure. Suppose that {an}∞n=0 is

a sequence of elements from A, N is a nonnegative rational integer, U is a subset in A. We set νN(U) =∑n=N
n=0 χU(an), where χU is a characteristic function of the subset U . In other words, νN(U) is the number of

terms of the sequence {an}∞n=0 which lie in U and whose subscripts do not exceed N . Our main definition in

the most general form can be formulated as follows.

0.1.1. Definition. The sequence {an}∞n=0 is uniformly distributed on A if

lim
N→∞

ν
(U)
N

N
≥ µ(U)

for all open subsets U ⊆ A (equivalently, if

lim
N→∞

ν
(U)
N

N
≤ µ(U)

for all closed subsets U ⊆ A). Or, what is the same, if

lim
N→∞

ν
(U)
N

N
= µ(U)

for all Borel subsets U ⊆ A with boundary of measure 0, i.e., such that µ(U \ IntU) = 0, where IntU is the

interior of the set U (= the union of all open subsets of U), U is the closure of U .

In what follows, we shall use, as a rule, not the general form, but a reformulation applicable to the class
of topological groups being considered.

Suppose that S and T are spaces with measures µ and τ , respectively, f :S → T is a measurable function

(i.e., every set f−1(U) is µ-measurable for τ -measurable U ⊆ T ). The function f is said to be proportional if

µ(f−1(U)) = µ(f−1(V )) for any two τ -measurable sets U , V ⊆ T when τ(U) = τ(V ). If µ, τ are probabilistic

measures (say, Haar measures), then the proportional function is said to be equiprobable. When S = T and
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µ = τ , we say that f preserves measure if µ(f−1(U)) = µ(U) for every measurable set U . Finally, if f

preserves measure and f−1(U) = U implies either µ(U) = 0 or µ(U) = 1 for every µ-measurable set U , then

the function f is ergodic.
Uniform, measure-preserving, and ergodic mappings are useful tools for constructing uniformly dis-

tributed sequences on topological groups, namely, the following proposition is valid.
0.1.2. Proposition. Suppose that S and T are compact topological groups, f :S → T is a continuous

function measurable with respect to the Haar measure. If {an}∞n=0 is a uniformly distributed sequence over S

and f is an equiprobable function, then the sequence {f(an)}∞n=0 is uniformly distributed over T . In particular,

if S = T and f preserves the Haar measure, then {f(an)}∞n=0 is uniformly distributed. If, moreover, f is ergodic

and S is separable, then the sequence {fn(a)}∞n=0 is uniformly distributed for almost all a ∈ S (by definition

fn(a) = f(fn−1(a)), f 0(a) = a).

The proof easily follows from the main definitions and results of [6, see Chapter 3: Definition 1.1, Exercise

1.10, Lemma 2.2].

For greater clarity, we shall reformulate the definitions given above for a case which is trivial from the

point of view of topology but very important for applications, where the group A is of the finite order |A|
and, consequently, is a discrete topological group. In this case, every subset U in A is simultaneously open,

closed, and measurable with Haar measure µ(U) = |U | |A|−1. Then the uniform distribution of the sequence

{an}∞n=0 means that

lim
N→∞

ν
(U)
N

N
=
|U |
|A|

for every subset U ⊆ A. Moreover, if the groups A and B are of finite orders, then the function f :A→ B is

equiprobable if and only if |f−1(a)| = |f−1(b)| for all a, b ∈ B. The function f :A → A preserves measure if

and only if it is bijective. Finally, f is ergodic if and only if it induces on A a permutation which is a cycle

of length |A|. In this case, we also say that f is transitive on A.

Polynomials over universal algebras. In what follows, we shall also need some concepts from polynomial

algebra, which we shall recall or introduce following [21]. We shall first define the concept of a polynomial

over a universal algebra.
We shall use the same symbol A for the universal algebra A and for the set of all its elements and

shall denote its signature by Ω. Let us consider a nonempty and not more than countable set X of the
symbols x1, . . . , xn, . . . such that X ∩ A = ∅. We say that the elements of the set X are variables. Then we
can formulate the following inductive definition, which is the most general definition of a polynomial in the
variables x1, . . . , xn, . . . over the universal algebra A.

0.1.3. Definition. (1) Any variable from X is a polynomial in the variables x1, . . . , xn, . . . over the universal

algebra A; (2) any element of the universal algebra A is a polynomial in the variables x1, . . . , xn, . . . over the

universal algebra A; (3) if g1, . . . , gm are polynomials in the variables x1, . . . , xn, . . . over the universal algebra

A and ω is the symbol of an m-aric operation from Ω, then ω(g1, . . . , gm) is a polynomial in the variables

x1, . . . , xn, . . . over the universal algebra A; (4) there are no other polynomials in the variables x1, . . . , xn, . . .

over the universal algebra A.

It pays to use this definition if a polynomial over a universal algebra corresponding (in the sense of

Sec. 0.0 of this work) to the processor for which the computer program is written must be associated with

this program. However, it is not very convenient for mathematical reasoning since, for instance, we must

then consider the polynomials 2x + 1 and (x + 1) + x over Z to be different. This is not surprising for a

programmer, since these programs are different indeed because they are different sequences of commands. As
for a mathematician who remembers the classical definition of a polynomial over a commutative ring, he will
immediately say that it is the same polynomial. Therefore, the following definition will be more to his taste.

0.1.4. Definition ([21]). Suppose that ν is a variety of universal algebras and A ∈ ν. We denote by F (X) the

free algebra of the variety ν freely generated by the set X, where X = {x1, . . . , xn, . . .}, or X = {x1, . . . , xn},
or X = {x}, with X ∩ A = ∅. Then the algebra of polynomials in the set of variables X over the universal
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algebra A is the ν-free product A[X] = A∗F (X) and its elements are polynomials over the universal algebra A.

We shall also use the notations A[x1, . . . , xn] and A[x] in the cases where we consider polynomials in n

variables or in one variable respectively. The appearance of elements from A in the notation of the polynomial

g represented as an element of the ν-free product A[X] in an irreducible form will be called coefficients of

the polynomial g. The definition of a polynomial in the form of an irreducible representation of an element
of some ν-free product makes it possible to speak of a certain “canonical” form of the polynomial, which

we shall write out every time when we study some specific variety ν. By virtue of (3) above, we can regard

the set of all polynomials (in the sense of Definition 0.1.3) in the variables X over A as a universal algebra

(which we shall denote, for the time being, by A{X}) of signature Ω. Obviously, A{X} is a free universal

algebra of signature Ω freely generated by the set A ∪ X and A[X] is isomorphic to the quotient algebra

of the universal algebra A{X} by the congruence defined by the identities of the variety ν (we exclude

from consideration the degenerate case of the so-called semidegenerate algebras, see [21]). In this case, the

corresponding epimorphism o:A{X} → [X] acts identically on X and on the elements from A.

In what follows, we shall also call elements from the universal algebra A (or its Cartesian degree) points

(or constants). The use of the latter term is due to the fact that first of all we shall be interested not in

the properties of the polynomials as elements of the corresponding ν-free product, but in the properties of
functions defined by the polynomials over the universal algebra A, or polynomial functions.

It is clear by intuition how the polynomial g = g(x1, . . . , xn) in the variables x1, . . . , xn over the universal

algebra A defines the polynomial function ϕg(x1, . . . , xn): its value ϕg(a1, . . . , an) at the point (a1, . . . , an) ∈
A(n) is the value of the polynomial g at this point which results if we replace all appearances of all the

variables xi in the notation of g as elements of the ν-free product A[x1, . . . , xn] by the elements ai ∈ A,

i = 1, . . . , n, respectively and carry out the corresponding computations in A. The formal definition reads as

follows: let us consider the sequence {ai ∈ A: i = 0, 1, 2, . . .}, and then, according to the properties of ν-free

products, the map ε′:X ∪ A → A such that xi 7→ ai (i = 1, 2, . . .), a 7→ a for all a ∈ A, can be uniquely

continued to the epimorphism ε:A[X] → A of universal algebras. Then the image gε of the polynomial g

under the epimorphism ε is the value of the polynomial g (or, what is the same, the value of the polynomial

function ϕg(x1, . . . , xn) at the point (a1, . . . , an)). In a similar way, we could give the definition of a polynomial

function using Definition 0.1.3 rather than 0.1.4. It is easy to understand, however, that in both cases we

shall define the same function (in the sense that polynomial functions defined by the polynomials w ∈ A{X}
and g ∈ A[X] coincide if g = wo). In the sequel we shall use the same symbol for a polynomial and the

corresponding polynomial function in cases where no ambiguity arises. The functions F :A(n) → A(m) of the
form

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where f1, . . . , fm are polynomials over A, are also polynomial.

Generally speaking, polynomial functions defined by different polynomials f, g ∈ A[X], f 6= g, can

coincide. For instance, if A is a group with multioperators and the group operation + (not necessarily

commutative) and neutral element 0, then the polynomials f and g define the same function on A if and

only if they lie in the same coset with respect to the normal subgroup I[X] ⊆ A[X] consisting of only those

polynomials which define the function all of whose values at all points are 0. The elements of the subgroup

IA[X] are called mixed identities of the group A and play a significant part in the study of polynomial functions

as well as in applications. For instance, if we have to write the shortest program that would realize a given
function, then we have to solve a rather typical problem of the combinatorial group theory, namely, choose

a representative of the minimal length in the coset with respect of a certain subgroup of a free product (in

this case using the subgroup IA[X]). To solve this problem, it is usually necessary to have some description

of the subgroup IA[X]. The naturally arising supposition that all mixed identities can be deduced from the

identities of the universal algebra A prove, in general, to be incorrect already in the class of noncommutative
groups with an empty set of multioperators. However, we sometimes manage to obtain such a description for
certain important classes of commutative groups with multioperators.
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Typical problems of polynomial algebra are the description of the class of all polynomial functions over
a given universal algebra and the description of the class of all algebras on which the polynomial functions
satisfy some condition. One of the problems formulated in the introduction to this work refers to the second
type, i.e., we mean the description of universal algebras which admit polynomial ergodic functions. This class
a fortiori contains all universal algebras C such that every function of n arguments on C, which assumes
the values in C, is defined by a certain polynomial over C in n variables, n = 1, 2, 3, . . .. These universal
algebras C are said to be polynomially complete. For instance, in the class of all commutative rings with
identity all finite fields, and only they, are polynomially complete, and in the class of all groups all finite
simple non-Abelian groups, and only they, are polynomially complete.

Polynomial functions possess an important property for the formulation of which we shall need the fol-

lowing concept. The function F :A(n) → A(m) of the form F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

is said to be compatible with all congruences of the universal algebra A, or, to make it shorter, compatible, if

for any congruence η of the universal algebra A and every pair (a1, . . . , an), (b1, . . . , bn) ∈ A(n) of elements

from A(n), congruent modulo η (i.e., elements such that aiηbi, i = 1, . . . , n), their images with respect to

F are also congruent modulo η, i.e., fj(a1, . . . , an)ηfj(b1, . . . , bn), j = 1, 2, . . . ,m. Here we deviate from the

terminology of [1, 13], where these functions are said to be conservative, and use the terminology accepted by

Foster and his followers (see [21, p. 45]), who called them compatible and used the term “conservative” in a

different sense. It immediately follows from Definition 0.1.3 that any polynomial function is compatible.
Let f :A→ A be a compatible function. If φ:A→ B is any epimorphism of universal algebras, x, y ∈ A

are arbitrary elements from A such that their images with respect to φ coincide, i.e., xφ = yφ, then necessarily

f(x)φ = f(y)φ. This means that every compatible function on A correctly defines a unique function on every

epimorphic image of the universal algebra A. Since any epimorphism of the algebra A defines a unique
congruence on it and vice versa, we say that f possesses a certain property P modulo congruence η if the
function induced by the function f on the corresponding epimorphic image possesses P . The corresponding

concept for the multidimensional function F :A(n) → A(m) can be introduced by analogy. The following
proposition is valid.

0.1.5. Proposition ([1]). Suppose that A is a finite group, η is its congruence, F :A(n) → A(m) (where

m ≤ n) is an equiprobable (bijective, transitive, resp.) compatible function. Then F is equiprobable (bijective,

transitive, resp.) modulo η. Moreover, if A is the direct product of the groups B and C, A = B × C, then

F is equiprobable on A if and only if it is equiprobable both on B and on C (i.e., modulo every congruence

corresponding to the projection onto a direct cofactor). Finally, the function F :A → A is transitive if and

only if it is transitive both on B and on C and the orders of |B| and |C| are coprime.

This proposition is usually used as a tool that makes it possible to reduce the problems on describing
polynomial ergodic or equiprobable functions on finite arbitrary order groups with multioperators to the corre-

sponding problems for a primary order group, say, if the initial group A of order n = pm1
1 , pm2

2 , . . . , pmss (where

p1, . . . , ps are primes and m1, . . . ,ms are positive rational integers) with multioperators can be decomposed

into the direct product s of groups with primary order multioperators pm1
1 , pm2

2 , . . . , pmss respectively. The

latter is valid a fortiori if, for instance, the group A with multioperators is a commutative ring, an Abelian

or nilpotent group with an arbitrary (positive, empty) set of operators, and in some other cases.

Non-Archimedean analysis. We have just made sure that the situation where a group with the multiop-
erators under study is of a primary order is distinguished: it is usually possible to reduce to it the general
case of an arbitrary finite group with multioperators and, in addition, universal algebras of order 2n are most

frequently encountered in applications (see Sec. 0.0). It turns out that in a number of important cases we can

reduce the study of uniformly distributed sequences, defined by polynomials over the primary order groups
with multioperators, to a similar problem for a ring of p-adic integers Zp, i.e., apply the methods developed

for continuous functions to a discrete problem. In this work, we use the methods of non-Archimedean anal-
ysis. Therefore, another important special case is uniformly distributed sequences of p-adic integers. Let us
reformulate for it the definitions given at the beginning of this section.

The reader can find the main concepts of the p-adic analysis in [9] or [22]. However, we shall recollect
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some of them. We fix a certain prime number p and, for any rational integer n ∈ Z, denote by ord pn the

exponent of the maximal power p which divides n (i.e., pord pn | n, but pord pn+1 - n). In this case ord pn = 0

for (n, p) = 1, ord p0 = ∞ by definition. Then any rational integer n 6= 0 admits of a unique representation

of the form n = n̂pord pn, where (n̂, p) = 1. We define the p-adic norm of any rational number n/m as∥∥∥ n
m

∥∥∥
p

= pord pm− ord pn,

with ‖0‖p = 0 by definition. With the aid of the p-adic norm, a p-adic metric dp(u, v) = ‖u− v‖p is given on

the space Q of rational numbers. The complement of the space Q with respect to this metric to a complete
metric space is denoted by Qp and is called a space of p-adic numbers. This space is non-Archimedean, i.e.,

the Archimedean principle is not satisfied in it (recall that the axiom states that for any two line segments

a, b there exists a nonnegative rational integer I such that the length of the segment Ia exceeds that of the

segment b). The set Zp of all p-adic integers is defined by the condition

Zp = {s ∈ Qp: ‖s‖p ≤ 1}
and, consequently, is a compact subspace in Qp. Every p-adic integer s admits of a single canonical represen-

tation of the form

s =
∞∑
i=0

δi(s)p
i,

where δi(s) ∈ {0, 1, . . . , p−1}. The arithmetic of p-adic integers (i.e., the operations of addition, multiplication,

subtraction), represented in canonical form, resemble that of natural numbers represented in the p-ary system

with the only difference that, roughly speaking, notations are admitted with an infinite number of significant

digits (because of which fact the numbers are usually written left to right and not right to left). Note that

negative rational integers have canonical notations with an infinite number of significant digits. For instance,
for p = 2 the number −1 is written as 11111 . . .. Using these infinite notations, we can visualize how the
bit-by-bit logical operations of a processor are extended to the space Z2. For example,

(−3) XOR (−1) = (1011 . . .) XOR (1111 . . .) = 0100 . . . = 2,

whereas in the language of canonical representations the XOR operation admits of the formal representation

δi(sXOR t) ≡ δi(s) + δi(t) (mod 2), i = 0, 1, 2, . . . .

Other bit-by-bit logical operations (OR, AND, . . . ) can be defined by analogy. Note that δi is also a

“computer” operation of taking the ith binary position of a number called an operand. The operation of
“elementary” masking with mask consisting of all zeros and having a unity at the ith place will then be

written as 2iδi, and the operation of an arbitrary masking with mask ε0ε1ε2 . . . εk (where εi ∈ {0, 1}) is,

obviously,
∑k
i=0 εi2

iδi.

It is easy to verify that all these operations are continuous functions on the topological group Zp. Its

basis of open sets is constituted by balls a+ pkZp, where k = 1, 2, . . . , a ∈ Zp. They are all closed sets and in

their totality form a basis of Borel sets of the space Zp, and, therefore, in order to define a Haar measure on

Zp, it is sufficient to determine its value on each of them. By definition, we assume that µ(a+ pkZp) = p−k for

all k = 1, 2, . . . , a ∈ Zp. The topological metric space Zp is compact, separable (the set N0 of all nonnegative

rational integers is everywhere dense in Zp) and has a countable base. The measure µ defined on Zp is a real

nonnegative normed Borel regular measure (and, hence, a probabilistic measure). The general definition of

a uniformly distributed sequence on a compact topological group introduced at the beginning of this section
assumes in this case the following form.

0.1.6. Definition. The sequence {an}∞n=0 of points of the space Zp is uniformly distributed over Zp if

lim
N→∞

νN(a+ pkZp)
N

= p−k
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for all k = 1, 2, . . . , a ∈ Zp. If this relation is satisfied only for a certain k = k0, then we say that the sequence

{an}∞n=0 is uniformly distributed modulo pk0 . In the corresponding definition of the n-dimensional uniformly

distributed sequence {an ∈ Z(n)
p }∞n=0 the relation given above is replaced by

lim
N→∞

νN(a+ pkZ(n)
p )

N
= p−kn.

Let us now establish some correspondences between the algebraic properties of Zp as a commutative ring

and as a metric space. We shall see that this will allow us to establish the correspondences, mentioned in
the introduction, between “discrete” and “continuous” properties of computer operations and reduce some

problems concerning the construction of uniformly distributed sequences on Z/pk to similar problems for Zp.
Let us consider the function f : Zp → Zp satisfying the Lipschitz condition with coefficient 1, i.e., ‖f(a)−

f(b)‖p ≤ ‖a − b‖p for all a, b ∈ Zp. The last condition is obviously equivalent to the system of inclusions

f(a + pkZp) ⊆ f(a) + pkZp for all open balls a + pkZp in Zp. Since pkZp is an ideal of the ring Zp and all

ideals in Zp are of this form, it follows that what we said above means that f is a function compatible with

all congruences of the ring Zp if and only if it satisfies the Lipschitz condition with coefficient 1. A similar

statement is also true for n-dimensional (n > 1) functions.

It should be pointed out that these functions f are themselves of interest for the theory of automata,
where they are known as determinate functions. The latter are defined on the set of all infinite sequences of
0 and 1, assume values in this set, and if a,b are two sequences such that their initial segments of length k

coincide, then the initial segments of the sequences f(a) and f(b) also coincide. Since we can associate the

infinite 0–1-sequence with a unique 2-adic integer in the canonic notation and vice versa, it follows that our
statement is valid, i.e., determinate functions are exactly the functions from Z2 which satisfy the Lipschitz
condition with coefficient 1.

Let us now consider the arbitrary canonical epimorphism φk: Zp → Zp/pkZp = Z/pk of the ring Zp onto

the residue ring Zp/pkZp modulo pk. This mapping φk is continuous and measurable. It is obvious that the

sequence {an ∈ Zp}∞n=0 is uniformly distributed modulo pk if and only if the sequence {φk(an)}∞n=0 is uniformly

distributed over Z/pk. Next, the compatible function F = (f1, . . . , fm): Z(n)
p → Z(m)

p is equiprobable if and

only if it is equiprobable modulo pk for every k, i.e., |F−1
k (a)| = |F−1

k (b)| for all a, b ∈ (Z/pk)(m), k = 1, 2, 3, . . ..

Here Fk is a function induced by the function F on Z/pk, i.e.,

Fk(x1, . . . , xn) = (φk(f1(x1, . . . , xn)), . . . , φk(fm(x1, . . . , xn)))

for all x1, . . . , xn ∈ Z/pk. In particular, if m = n, then F preserves measure if and only if every function

Fk: (Z/pk)(n) → (Z/pk)(n) is bijective. Finally, F is ergodic if and only if every function Fk is transitive. In

the remaining part of the article, we shall state that F is bijective (transitive) modulo pk if Fk is bijective

(transitive) on Z/pk. The criterion of ergodicity of a linear polynomial over a residue ring, mentioned in the

introduction, provides an important example of an ergodic function on Zp.
0.1.7. Theorem ([8, Chapter 3, Theorem A]). The function f(x) = m + nx with rational integer

coefficients m,n is transitive on Z/pk if and only if m and p are coprime and either n ≡ 1 (mod p) or p = 2,

k > 1, and n ≡ 1 (mod 4).

It immediately follows from this criterion that the function f(x) = m + nx with the p-adic integer

coefficients m,n is ergodic if and only if it is ergodic modulo p for an odd prime p or modulo 4 for p = 2, i.e.,

these conditions are sufficient and necessary for the sequence {fn(a)}∞n=0 to be uniformly distributed over Zp
(here a is an arbitrary p-adic integer).

Theorem 0.1.7 was used to construct linear congruent pseudorandom generators with a maximal period

length (see [8]). The results presented below, together with 0.1.5, can also be used to construct new (no

longer linear) congruent generators with a maximal period length modulo arbitrary n ∈ N. For possible

cryptographic applications of the latter, see [5], where it is pointed out, in particular, that even truncated
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linear congruent generators (whose output sequences consist only of higher-order digits) are cryptographically

unsecure, whereas the methods of decoding nonlinear truncated congruent generators are not known.
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Chapter 1

POLYNOMIALS OVER COMMUTATIVE GROUPS WITH
MULTIOPERATORS

Everywhere in this chapter, we consider the case where the group A with multioperators is commutative

(Abelian), imposing particular constraints on the set of multioperators. One of the most important special

cases consists in the fact that all multioperators are operators, i.e., unitary operations acting as endomorphisms
relative to the commutative group operation.

1.1. Polynomials over Abelian Groups with Operations

Suppose that G is an additive Abelian group with the set Ω of operators (possibly, empty). We denote

the result of the action of the operator ω ∈ Ω on the element g ∈ G by ωg. Then any polynomial w(x) in the

variable x over G can be written as

w(x) = a+ (n1ω1 + . . .+ nsωs)x,

where a ∈ G, ω1, . . . , ωs ∈ Ω, n1, . . . , ns ∈ Z. Since the linear combination n1ω1 + . . .+ nsωs acts on G as the
endomorphism ε, any polynomial function over the group G can be represented as a+ εx.

Let the group G be finite. Then the polynomial w(x) is obviously bijective if and only if the operator

n1ω1 + . . . + nsωs is nonsingular, i.e., induces the automorphism of the group G. We have thus completely
described the measure-preserving polynomial functions in one variable over the arbitrary finite Abelian group
G with operators. As to polynomial ergodic functions in one variable, they exist far from over every group.

1.1.1. Theorem ([5]). The finite Abelian group G with a set of operators Ω admits of a polynomial ergodic

function if and only if it belongs to one of the following types:

(i) a cyclic group with an arbitrary set of operators,

(ii) an elementary Abelian group of type (2.2) (a direct product of two cyclic groups of order 2, i.e., the

Klein group K4), with a certain operator from Ω inducing an involution on G,

(iii) a direct product of a group of type (ii) by a group of type (i) of an odd order.

Ergodic polynomial functions in one variable over groups of type (i) are completely characterized by

Theorem 0.1.7, together with 0.1.5, since a finite cyclic group is isomorphic to an additive group of a suitable
residue class ring, the action of the operator consisting in the multiplication by a certain number. In other
words, if the cyclic group G of order s with some set of operators is identified with an additive group of the

ring Z/s, then any polynomial function f(x) over it can be represented as f(x) = m+nx, where m and n are

rational integers, and the transitivity criterion consists in the fact that m and s are coprime, n ≡ 1 (mod p)

for every prime p that divides s, and if 4 | s, then, additionally, n ≡ 1 (mod 4).

Ergodic polynomial functions in one variable over groups of type (ii) are completely described by the

following theorem.

1.1.2. Theorem ([5]). The polynomial function a+εx over the Klein group K4 is ergodic if and only if ε is

an involution in the group of automorphisms of the Klein group (i.e., ε2 is an identity mapping), and εa 6= a.
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Theorems 1.1.1 and 1.1.2, together with Proposition 0.1.5, describe in an obvious way ergodic functions

in one variable over groups of type (iii).

As to polynomial functions in several variables over the group G, this case can be reduced to functions

in one variable over the direct power of the group G. Indeed, any polynomial function F :G(n) → G(m) can
be represented as

F (x1, . . . , xn) = (a1 + ε11x1 + . . .+ ε1nxn, . . . , am + εm1x1 + . . .+ εmnxn),

or, in matrix form, as

F (x1, . . . , xn) = (a1, . . . , an) + (x1, . . . , xn)

 ε11 . . . εm1

. . . . . . . . .
ε1n . . . εmn

 ,
where a1, . . . , an ∈ G, εij are endomorphisms of the group G, i = 1, . . . ,m, j = 1, . . . , n. We can regard the

matrix appearing on the right-hand side as an endomorphism of the Abelian group G(n), and therefore we

can regard the function F as a function in one variable on the group G(n) and apply the above-mentioned
theorems.

Functions of the form x 7→ a+εx on the Abelian group G, where ε is some endomorphism, are also called
affine transformations of the group G. Ergodic transformations of infinite Abelian groups were studied by

a number of authors. The corresponding results and literature are given in [5]. With this remark, we finish

the consideration of polynomial functions on Abelian groups with operators and pass to another important
special case of commutative groups with multioperators, namely, commutative rings.

1.2. Polynomial Functions on Commutative Rings

Just as in the preceding section, we shall begin with finite rings. Everywhere below, R is a finite associative
and commutative ring. The existence of an identity in R is not presupposed, but if it is present, then it is
denoted by e or 1. It immediately follows from the general definition of a polynomial over a universal algebra

that the polynomial f(x1, . . . , xn) in the variables x1, . . . , xn over the ring R has the canonical representation
∑

(i1,...,in)

ri1,...,inx
i1
1 · · · xinn +

∑
(j1,...,jn)

sj1,...,jnx
j1
1 · · · xjnn ,∑

(i1,...,in)

ri1,...,inx
i1
1 · · · xinn ,

where (i1, . . . , in) ∈ N(n)
0 , (j1, . . . , jn) ∈ N(n), sj1,...,jn ∈ Z, ri1,...,in ∈ R, with almost all sj1,...,jn , ri1,...,in being 0, N

is the set of all positive rational integers, N0 = N∪ {0}. For ik = 0, the variable xk in the monomial xi11 . . . x
in
n

is absent and, by definition, r0,...,0x
0
1 . . . x

0
n = r0,...,0 = r0.

It is known (see [23]) that a finite associative and commutative ring decomposes into a direct sum of

rings of pairwise coprime primary orders and every direct summand is either a local ring (i.e., a ring with a

single maximal ideal, not coincident with the whole ring) or a nilpotent ring (i.e., a ring a certain power of

which is zero). Consequently, by virtue of Proposition 0.1.5, the study of equiprobable, measure-preserving,

and ergodic polynomial functions on R reduces to the case where R is of a primary order and is either local or
nilpotent. If R is a field, then we can consider the problem of describing functions of this kind to be solved,

since in this case any R(n) → R function can be defined by a suitable polynomial whose explicit form can be
found with the aid of the interpolation formula of Newton or Lagrange. Therefore, we assume in the sequel
that R is not a field.

We shall also need the concept of the derivative of the polynomial with respect to some variable which
need not be recalled for the case of a polynomial over a ring with identity. Now if R is a nilpotent ring and

f(x1, . . . , xn) is a polynomial over it, represented in the canonical form given above, then, by definition, we
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set its derivative ∂
∂xi
f(x1, . . . , xn) with respect to the variable xi equal to s0,...,0,1,0,...,0, where 1 in the subscript

occupies the ith position. The Jacobi matrix and the Jacobian of the polynomial map F = (f1, . . . , fn):R(n) →
R(m) can now be defined in the standard way.

We denote by J(R) the Jacobson radical (i.e., the maximal ideal) of the local ring R and by R = R/J(R)

the residue field of the ring R. For the nilpotent ring R we denote by Ann (R) = {r ∈ R: rR = 0} its

annihilator.
The following proposition is valid.

1.2.1. Proposition. Suppose that R is a local ring and J(R) 6= 0.

1. The polynomial function F :R(n) → R(m), where m ≤ n, is equiprobable if it is equiprobable on R
(n)

(i.e., equiprobable modulo J(R)) and the rank of its Jacobi matrix modulo J(R) is equal to m at every point

from R
(n)

.

2. For m = n, the function F given above is bijective (i.e., preserves measure) on R(n) if and only if it

is bijective on R
(n)

and its Jacobian does not turn into zero at any point from R
(n)

(equivalently: if and only

if it is bijective on (R/J(R)2)(n)).

The proof of this proposition can actually be found in [2, Chapter 4, Propositions 4.31 and 4.34]. When

we compare statements 1 and 2, a natural conjecture suggests itself that the sufficient conditions of the
equiprobability of the function F are also necessary conditions. Unfortunately, this conjecture is not correct in

the general case; the corresponding counterexample can be found in [18], where the polynomial f(x, y) ∈ Z[x, y]

is constructed which is equiprobable modulo pn (p is a prime number) for every n > 1 and is such that for any

polynomial g(x, y) ∈ Z[x, y] the map φ: (a, b) 7→ (f(a, b), g(a, b)) is not bijective modulo pn for any n > 1. We

can show, however, that if our conjecture is correct, then, for any equiprobable polynomial f , there exists a
polynomial g such that the corresponding map φ is bijective. Thus, the sufficient conditions of equiprobability
formulated in Sec. 1.2.1 are not, generally speaking, necessary, at least for residue rings. As to the case of
nilpotent rings, here we can obtain a criterion of equiprobability of polynomial functions.

1.2.2. Proposition. Suppose that R is a nilpotent ring of order pk and p is a prime number. The function

F = (f1, . . . , fm):R(n) → R(m) with m ≤ n is equiprobable if and only if the rank of its Jacobi matrix modulo

p is equal to m (equivalently: if and only if F is equiprobable modulo R2).

It is easy to carry out the proof of this proposition by induction on k and use the fact that modulo R2 the

function F acts as the affine transformation h 7→ hF ′ + r0, where F ′ is a Jacobi matrix of the transformation
of F .

Before describing ergodic polynomial transformations of finite associative and commutative rings, we
must first find out what rings admit of these transformations. The following theorem holds true.

1.2.3. Theorem. The ring R admits of an n-dimensional polynomial ergodic transformation (i.e., there

exist polynomials f1, . . . , fn ∈ R[x1, . . . , xn] such that the transformation F = (f1, . . . , fn):R(n) → R(n) is

ergodic) if and only if one of the following cases is valid:

(a) n > 2 and R is a direct sum of finite fields with pairwise coprime characteristics,

(b) n = 2 and R is a direct sum of rings of pairwise coprime orders, and every direct summand is either

a finite field or is isomorphic to one of the following rings:

Z/4, GF (2)[ξ]/(ξ2), ξGF (2)[ξ]/(ξ2);

(c) n = 1 and R is the direct sum of rings of pairwise coprime orders, every direct summand being

isomorphic to one of the following rings:

(1) a finite field;

(2) Z/pm, p is a prime number, m ∈ N;

(3) GF (p)[ξ]/(ξ2), p is a prime number;

(4) GF (p)[ξ]/(ξ3), p = 2 or p = 3;

(5) Z/p2[ξ]/(ξ3, ξ2 − pe), p = 2 or p = 3;
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(6) Z/9[ξ]/(ξ3, ξ2 + 3e);

(7) pkZ/pk+m ⊂ Z/pk+m, p is a prime number, k,m ∈ N;

(8) ξGF (p)[ξ]/(ξ3), p = 2 or p = 3.

The proof of this theorem for case (c) under the condition that R is a ring with unity was published in

[2]. I hope to publish the proof for the other cases in the near future.

The next problem is the description of ergodic (transitive) polynomials over each of the rings enumerated

in the formulated theorem. In order to get this description, we shall have to do the same in each case, which
we shall first illustrate using an example of finite fields.

Thus, suppose that R = GF (q) is a finite field of q elements. Then any transformation τ : GF (q) →
GF (q) can be uniquely defined by means of the polynomial fτ (x), whose power does not exceed q − 1 and

whose explicit form can be found from Newton’s or Lagrange’s formulas. We call the polynomial fτ (x) an

interpolation polynomial of the transformation τ . It is well known that the polynomial g(x) ∈ GF (q)[x]

vanishes at all points from GF (q) if and only if xq − x | g(x). In other words, the ideal IGF (q)[x] of all mixed

identities of the variable x is generated by the polynomial xq−x. Summing up what we have said, we get the

following description of ergodic polynomials in one variable over GF (q): the polynomial f(x) ∈ GF (q)[x] is

transitive on GF (q)[x] if and only if it has the form f(x) = fτ (x)+(xq−x)h(x), where fτ (x) is an interpolation

polynomial of the transformation τ transitive on GF (q) and h(x) is an arbitrary polynomial over GF (q).

Note that the description given above was obtained on the basis of solutions of the following three
problems:

first, all ergodic functions on R were described (in this case exactly the functions which define on R the

substitution τ which is a cycle of length q),

second, the polynomical representation was found for each of these functions (i.e., its interpolational

polynomial fτ (x)),

third, all mixed identities of the ring R were described.
This is the general scheme of the description of all polynomials which represent the class F of functions

on the group A with multioperators. First, we construct an interpolation algorithm which associates every
function φ ∈ F with a single polynomial fφ over A that defines φ, i.e., we associate the functions φ of the

representative fφ of the coset fφ + IA with respect to the subgroup IA of the mixed identities of the universal

algebra A. All polynomials from fφ + IA and only they define the same function φ, and therefore, having

described IA, i.e., all mixed identities of the universal algebra A, we complete the description of all polynomials

which define the functions from F . This procedure (known as an interpolation procedure) was used to describe

ergodic, equiprobable, measure-preserving polynomials, and in this way all transitive polynomials over each
of the rings enumerated in Theorem 1.2.3 were described. However, in this work we shall only consider some
of them, which, to my mind, are of special interest for pure mathematics and for its applications. Since it is
usually required in applications that a recurrent sequence, generated by an ergodic polynomial, have a long

period (otherwise, it is difficult to consider its elements to be “random” in any sense), we immediately exclude

from consideration rings of “small” orders, i.e., rings of the types c4–c6 and c8, as well as rings of the b type
which are not fields. In addition, since, by virtue of Proposition 0.1.5, the description of ergodic polynomials
over direct sums of rings of pairwise coprime orders obviously reduces to the description of ergodic polynomials
on each direct summand, it is expedient to exclude from further consideration rings of nonprimary orders as
well. Thus, only finite fields, residue class of rings, and c3 and c7 rings remain.

Formally, we can consider the problem of the description of ergodic polynomials over finite fields to

be already solved (see the characterization of these polynomials in one variable given above). However,

this is hardly sufficient for applications since, when we construct an ergodic polynomial over a field of q
elements, say, with the use of Newton or Lagrange interpolation formula, we have to compute q coefficients
of the interpolation polynomial, and this is, as a rule, impractical since it is required in applications that the
period of the corresponding sequence and, hence, the number q be of utmost importance. For instance, in

cryptography this boundary is of order 1020 and higher (to resist “ a brute force attack”). In other words, q

must be large enough for the time spent on this exhaustive search to be beyond all reasonable bounds. But
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then the time spent on the construction (with the use of Newton or Lagrange interpolation procedure) of an

ergodic polynomial will be beyond the practical bounds. It stands to reason that we can pose the problem

of describing low-degree polynomials ergodic over a finite field (or, at least, polynomials which have a small

number of nonzero monomials). However, I do not know of any essential results obtained in this direction.

Similar arguments can be used in the consideration of rings of R type c3 which are of order p2 and are,
consequently, large enough only when p is sufficiently large. Since the description of ergodic polynomials on

such a ring R immediately implies the description of ergodic polynomials over a field of p elements (by means

of the reduction of the corresponding polynomials modulo the Jacobson radical), all that we have said above

about the possibility of using ergodic polynomials over finite fields for constructing program generators of
random numbers also refers to the case under study.

Finally, the problem of describing ergodic polynomials over rings of the c7 type (they are nilpotent rings

isomorphic to the ideals of rings of the c2 type) proves to be reducible to a similar problem for rings of the

c2 type. Indeed, if R = pkZ/pk+m, k ≥ 1, m ≥ 1, and f(x) ∈ R[x], then f(x) can be represented in the form

f(x) = r(x) +u(x), where r(x) is a polynomial all of whose coefficients lie in R and u(x) is a polynomial with

rational integer coefficients and without a constant term (see the canonical representation of polynomials over

rings without an identity at the beginning of this section). Since any element of the ring R can be represented

as rpk, where r ∈ Z, the polynomial r(x) admits of the representation

r(x) = r0p
k + r1p

kx+ . . . ,

where ri ∈ Z, i = 0, 1, 2, . . .. We represent the polynomial u(x) in the form

u(x) = u1x+ u2x
2 + . . . ,

where ui ∈ Z, i = 1, 2, 3, . . .. Substituting now x = pkz into the expression for f(x), we find that f(x) =

f(pkz) = pkg(z), where

g(z) = r0 + (r1p
k + u1)z + (r2p

2k + u2p
k)z2 + . . .+ (rip

ik + uip
(i−1)k)zi + . . . .

It follows immediately that f(pkgn(z)) = pkgn+1(z) (recall that fn(x) = f(fn−1(x)), f 0(x) = x), and simple

induction on n shows that fn(x) = pkgn(z) for all n = 1, 2, . . ., which means that the polynomial f(x) is

ergodic on R if and only if the polynomial g(z), being a polynomial with rational integer coefficients, is

transitive modulo pm.
The arguments we have used make it possible to leave for further consideration a single type of rings,

namely, residue class ring modulo some power of prime integer. We shall obtain the description of ergodic
polynomials over such rings as a very special case from the solution of the general problem of describing
ergodic functions of the space of p-adic integers, to which the next section of this work is devoted.

1.3. p-Adic Functions

Unless otherwise specified, the proofs of the results considered in this section can be found in [1, 14].

Compatible functions and interpolation series. We begin by studying the functions which are compati-
ble with all congruences of the ring Zp, or compatible functions. As was shown in Sec. 0.1, this class consists of

exactly all functions that satisfy the p-adic Lipschitz condition with coefficient 1, and it contains, in particular,
all functions polynomial on Zp. This class is of particular importance for applications. For instance, of all the

2-adic extensions of standard commands of a processor which were mentioned in the introduction (addition

and multiplication of binary representations of integers, reduction modulo 2n, addition and multiplication
modulo 2n, XOR, OR, AND, which are the bit-by-bit logical operations “exceptional or,” “or,” and “and”

respectively, SHR and SHL, which are shifts by one position to the higher or lower orders, masking) only the

16



extension of the SHL operation is not compatible. Hence, all 2-adic extensions of the superpositions of these

operations (except for SHL) are compatible with all congruences of the ring Z2.

In this section, we shall also demonstrate techniques which we use to characterize the measure-preserving
and ergodic functions in the class of all compatible functions for p = 2. In addition, we suggest a method
which can be used for solving similar problems in the class of polynomial functions over universal algebras of

the form 〈Z2,Ω〉, where Ω is any set of compatible functions.

Let f :N0 → Zp be an arbitrary function, N0 = N ∪ {0}. It is known (see [22]) that f admits of one and

only one representation in the form of the series

f(x) =
∞∑
i=0

ai

(
x

i

)
,

where
(
x
i

)
= x(x−1)...(x−i+1)

i!
for i = 1, 2, . . .,

(
x
0

)
= 1, ai ∈ Zp (i = 0, 1, 2, . . .). This series is known as an

interpolation series of the function f . The following relation connects the coefficients ai and the values of the
function f :

ai =
i∑

j=0

(−1)n+j

(
n

j

)
f(j) = ∆if(0),

where ∆f(x) = f(x+ 1)− f(x), ∆sf = ∆s−1(∆f) (s = 1, 2, . . .), ∆0f = f .

If f is uniformly continuous on N0 relative to the p-adic metric, then it admits of a unique continuation
to the uniformly continuous function on Zp. In this case, the corresponding interpolation series converges on

Zp uniformly. The following statement is valid: the series

f(x) =
∞∑
i=0

ai

(
x

i

)
(ai ∈ Qp, i = 0, 1, 2, . . .) (∗)

converges on Zp uniformly if and only if the p-adic limit of its ith coefficient exists and is equal to zero, i.e.,
p

limi→∞ ai = 0. In this case, the interpolation series defines the uniformly continuous function on Zp.
By analogy we introduce interpolation series in several variables:

f(x1, . . . , xn) =
∑
i

ai

(
x1

i1

)(
x2

i2

)
. . .

(
xn

in

)
,

where ai1,...,in ∈ Zp, i = (i1, . . . , in) runs through N(n)
0 . Every function f(x1, . . . , xn):N(n)

0 → Zp admits of such

a representation, and this representation is unique. It is uniformly continuous if and only if ‖ai1,...,in‖p → 0

as i1 + . . .+ in → 0.
Thus, everywhere in this section

f(x): Zp → Zp, f(x1, . . . , xn): Z(n)
p → Zp

are uniformly continuous on Zp functions which are represented by the corresponding interpolation series.

The interpolation series proved to be a convenient tool for describing some important properties of uniformly
continuous functions. The first property can be formulated as follows.

1.3.1. Definition. The function F = (f1, . . . , fm): Z(n)
p → Z(m)

p is called an identity modulo pk if the
congruence

F (u) ≡ (0, . . . , 0) (mod pk)

is satisfied for every u ∈ Z(n)
p .

Identities modulo pk are needed for describing various properties of compatible functions since two func-

tions of this kind obviously coincide modulo pk if and only if their difference is an identity modulo pk.
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1.3.2. Proposition. The function f(x1, . . . , xn) is an identity modulo pk if and only if ‖ai1,...,in‖p ≤ p−k for

all (i1, . . . , in) ∈ N(n)
0 .

Let us now use the language of interpolation series to characterize compatible functions. Recall that [α]

for real α denotes the rational integer closest to α but not exceeding α.

1.3.3. Theorem. The function f(x1, . . . , xn) is compatible if and only if

‖ai1,...,in‖p ≤ p−µ(i1,...,in),

where

µ(i1, . . . , in) =

{
0 if i1 = i2 = . . . = in = 0;

max{[log pik]: ik 6= 0, k = 1, 2, . . . , n} otherwise.

In particular, the function f(x): Zp → Zp is compatible if and only if

‖ai‖p ≤ p−[log pi]

for all i = 1, 2, . . ..

Recall that the polynomial f(x) ∈ Q[x] (f(x) ∈ Qp[x], resp.) is integer-valued if the function it defines is

integer-valued, i.e., f(Zp) ⊆ Zp (f(Z) ⊆ Z, resp.).

1.3.4. Corollary (cf. [16]). The integer-valued polynomial f(x) ∈ Q[x] is compatible with all congruences

on Z (i.e., for any m ∈ N \ {1}, a, b ∈ Z, the congruence a ≡ b (modm) implies the congruence f(a) ≡ f(b)

(modm)) if and only if it can be represented as

f(x) = a0 +
d∑
i=1

ai LCM (1, 2, . . . , i)

(
x

i

)
,

where LCM (k, l,m, . . .) is the least common multiple of the numbers k, l,m, . . . ∈ N.

The proof follows immediately from Theorem 1.3.3 since the function of a rational integer argument is
obviously compatible in the sense specified in the hypothesis of the corollary if and only if it is compatible as a

function of an integer p-adic argument for every prime p and p[log pi] is the highest power of p not exceeding i.
Let us now characterize all measure-preserving or ergodic functions in the class of all compatible functions

for p = 2. Everywhere in this subsection, p = 2. Recall that, as was stated in Sec. 0.1, a compatible function

preserves measure (is ergodic, resp.) if and only if it is bijective (transitive, resp.) every modulo 2k for

k = 1, 2, . . ., i.e., induces a substitution on Z/2k (a substitution which is a cycle of length 2k, resp.).

1.3.5. Theorem. The function f : Z2 → Z2, represented as the series

f(x) =
∞∑
i=0

ai

(
x

i

)
,

is compatible and preserves measure if and only if

‖a1‖2 = 1, ‖ai‖2 ≤ 2−[log 2t]−1, i = 2, 3, . . . .

It is compatible and ergodic if and only if

a0 ≡ 1 (mod 2);

a1 ≡ 1 (mod 4);

ai ≡ 0 (mod 2[log 2(i+1)]+1), i = 2, 3, . . . .

These theorems yield a number of important corollaries. The first corollary concerns integer-valued
polynomials over the field of 2-adic numbers Q2.

1.3.6. Corollary. If f(x) is an integer-valued compatible polynomial over Q2, then there exists a rational

integer c = c(f) (r(f), resp.) such that the polynomial f preserves measure (is ergodic, resp.) if and only if
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it is bijective modulo 2c(f) (is transitive modulo 2r(f), resp.). Moreover, there exists an efficient procedure of

computing these quantities c(f) and r(f) for each polynomial f of this kind. Finally, if f is a polynomial over

Z or Zp, then we can take c(f) = 2 (r(f) = 3, resp.).

By virtue of this corollary, in order to find out whether a given polynomial is ergodic (or preserves

measure), we must study the behavior of the corresponding function modulo 2k, i.e., the criterion does not

directly depend on the coefficients of the given polynomial. However, if we represent the polynomial in a

different basis, this relationship becomes explicit, namely, let us represent f ∈ Z2[x] in the basis

{x(0) = 1, x(i) = x(x− 1) . . . (x− i+ 1): i = 1, 2, . . .},
i.e.,

f =
d∑
i=0

cix
(i) (ci ∈ Z2; i = 0, 1, 2, . . .).

Then the following corollary is valid.
1.3.7. Corollary. The polynomial f presented above preserves measure if and only if the following three
congruences are simultaneously valid:

c1 ≡ 1 (mod 2), c2 ≡ 0 (mod 2), c3 ≡ 0 (mod 2).

The polynomial f is ergodic if and only if the following four congruences are simultaneously valid:

c0 ≡ 1 (mod 2), c1 ≡ 1 (mod 4), c2 ≡ 0 (mod 2), c3 ≡ 0 (mod 4).

M. V. Larin was the first to give a complete description (but using a different terminology) of polynomials

over Z, transitive modulo pk, for all prime p and all k ∈ N. His method was different from that used in this

work and did not use the p-adic technique. (Some examples of non-linear ergodic modulo 2k polynomials due

to R.R.Coveyou were mentioned in [8], as well as the conditions for the polynomial of degree 2 with integral

coefficient to be ergodic modulo some m - the text in brackets was added by V.S.Anashin to the text of the

original paper after its publication)

The theorems proved above can also be used for describing all compatible and measure-preserving or

ergodic polynomials over the universal algebras A of the form 〈Z2,Ω〉. The idea is to represent all operations

from Ω in the form of interpolation series and then, using these representations, calculate the coefficients ai(f)

of the interpolation series of the specific polynomial f over A as compositions of interpolation series which

are operations from Ω. The coefficients ai(f) are functions of the coefficients of f . Therefore, by virtue of

Theorems 1.3.3 and 1.3.5, the polynomial f is compatible, preserves measure, or is ergodic, if and only if all

coefficients ai(f) satisfy the congruences described in the corresponding theorems. Solving the congruence

systems obtained in this way, we find the necessary and sufficient conditions which must be satisfied by the
coefficients of the polynomials f for this polynomial to be compatible, ergodic, or measure preserving. It
stands to reason that not only the solutions of the corresponding systems of congruences but also the finding
of the systems themselves in explicit form may turn out to be difficult. Nevertheless, the method works, and
below we give some respective examples.

Let us consider certain polynomials over the universal algebra 〈Z2, {+, · ,XOR, δ0, δ1, δ2, . . .}〉, which can

also be of interest for programming since they have been constructed with the aid of the “computer” operations
XOR, δ0, δ1, δ2, . . . defined in Sec. 0.1.
1.3.8. Proposition. 1◦. The function f : Z2 → Z2 of the form

f(x) = a+
n∑
i=1

ai(xXOR bi),

where a, ai, bi ∈ Z2, i = 1, 2, 3, . . ., preserves measure (is ergodic, resp.) if and only if it is bijective (transitive,

resp.) modulo 2 (modulo 4, resp.).
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2◦. The function f : Z2 → Z2 of the form

f(x) = a+
∞∑
i=0

aiδi(x),

where a, ai ∈ Z2, i = 0, 1, 2, . . ., is compatible and ergodic if and only if the following conditions are simulta-
neously satisfied:

a ≡ 1 (mod 2);

a0 ≡ 1 (mod 4);

‖ai‖2 = 2−i, i = 1, 2, 3, . . . .

It is compatible and measure-preserving if and only if

‖ai‖2 = 2−i, i = 0, 1, 2, 3, . . . .

Uniform differentiability modulo pk. The method of constructing compatible, measure-preserving or

ergodic functions as polynomials over algebraic systems of the form A = 〈Z2,Ω〉, which was described above,

is universal in the sense that, formally speaking, it is applicable to an arbitrary number of operations Ω.
However, as was already mentioned, in special cases its use may be a difficult problem connected with the

finding of explicit expressions for the coefficients ai(f) or with the solution of the corresponding system of

congruences. Therefore, we shall demonstrate in the sequel a different method, which also allows us to describe
the indicated functions. This method is no longer universal but can only be applied to functions which are
close, in some sense, to uniformly differentiable functions. However, it also works in the case where p is an

odd prime number and its application makes it possible to obtain statements of the type of 1.3.6 or 1.3.8(1◦)
simultaneously for all polynomials over the universal algebra A.

1.3.9. Definition. We say that the function F = (f1, . . . , fn): Z(n)
p → Z(m)

p is differentiable modulo pk at the

point u = (u1, . . . , un) ∈ Z(n)
p if there are a positive rational integer N and a matrix F ′k(u) over Qp of size

n×m (which is known as the Jacobi matrix modulo pk of the function F at the point u) such that for every

positive rational integer K ≥ N and every h = (h1, . . . , hn) ∈ Z(n)
p from the system of inequalities ‖hi‖p ≤ p−K

(i = 1, 2, . . . , n) it follows that

dmp (F (u+ h), F (u) + hF ′k(u)) ≤ p−k−K ,

where dmp is a metric on Q(m)
p induced by the metric dp on Qp:

dmp (a, b) = max{d(ai, bi): i = 1, 2, . . . ,m}

for all a = (a1, . . . , am), b = (b1, . . . , bm) ∈ Q(m)
p . Recall that, by definition, d(u, v) = ‖u−v‖p for all u, v ∈ Qp.

The inequality given in Definition 1.3.9 is equivalent to the fact that the function F (u + h), being a

function of the argument h, can be represented in the form

1.3.10. F (u+ h) = F (u) + hF ′k(u) + α(u, h)

if h is “sufficiently small,” i.e., ‖h‖np ≤ p−K , where

1.3.11.
‖α(u, h)‖np
‖h‖np

≤ p−k.

Here the norm ‖v‖sp of the vector (v1, . . . , vs) ∈ Q(s)
p is defined as max{‖vi‖p: i = 1, 2, . . . , s} and everywhere

in the sequel will be denoted by the same symbol ‖ ‖p.
Finally, conditions 1.3.10 and 1.3.11 are equivalent to the condition

1.3.12. F (u+ h) ≡ F (u) + hF ′k(u) (mod pk+K)
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when ‖h‖p ≤ p−K . Here a ≡ b (mod ps) for a = (a1, . . . , ar), b = (b1, . . . , br) ∈ Q(r)
p means that ‖ai−bi‖p ≤ p−s

(or, what is the same, ai = bi + cip
s for suitable ci ∈ Zp) for all i = 1, 2, . . . , s. These elements a, b will be

called congruent modulo pk.

We have thus formulated three equivalent definitions of the differentiability of a function modulo pk at
a point. Since this concept is very important for the whole subsequent theory, we shall carry out a brief
discussion.

First, note that Definition 1.3.10 could also be formulated for a function defined on an open subset

E ⊆ Q(n)
p and assuming values in Q(m)

p . However, we shall not need it since in the sequel we shall only study

integer-valued functions on Z(n)
p , i.e., functions which map Z(n)

p into Z(m)
p .

Second, it pays to compare the concept that we have introduced with the classical definition of the
differentiability of a function at a point. For the above-mentioned function F , the latter assumes the form
1.3.11 and condition 1.3.12 is replaced by the stronger condition

p

lim
n→0

‖α(u, h)‖p
‖h‖p = 0,

where
p

lim is a p-adic limit. This yields the following trivial proposition.

1.3.13. Proposition. If the function F = (f1, . . . , fm):Q(n)
p → Q(m)

p is differentiable at the point u ∈ Q(n)
p ,

then it is differentiable modulo pk at this point for all k = 1, 2, . . ..

Third, whereas the differentiability of the function f :Qp → Qp means that the ratio f(u+h)f(u)
h

can be

approximated with any preassigned degree of accuracy by the value f ′(u), the differentiability modulo pk only

requires that this accuracy be not weaker than p−k.
Let us consider the following important subclass in the class of functions differentiable modulo pk.

1.3.14. Definition. We say that the function F = (f1, . . . , fm): Z(n)
p → Z(m)

p , which is differentiable modulo

pk at all points u ∈ Z(n)
p , has integer-valued derivatives modulo pk if the matrix F ′k(u) is a matrix over Zp.

The concept we have introduced is similar to the concept of the so-called twice integer-valued function:

the latter is defined as the function F :Q(n)
p → Q(m)

p such that F (Z(n)
p ) ⊆ Z(m)

p , F is differentiable at all points

from Z(n)
p , and F ′(Z(n)

p ) ⊆ Z(m)
p .

We can introduce, in the ordinary way, the concept of a function which is uniformly differentiable mo-

dulo pk.

1.3.15. Definition. The function F = (f1, . . . , fm): Z(n)
p → Z(m)

p is uniformly differentiable modulo pk if there

exists a positive rational integer N and a function F ′k, defined on Z(n)
p and assuming values in the space of all

linear maps from Z(n)
p into Q(m)

p such that for all u = (u1, . . . , un) the inequality ‖hi‖p ≤ p−K ≤ p−N yields

1.3.12. For the given F , the smallest N that satisfies the above-mentioned condition is denoted by Nk(F ).

It follows from 1.3.9 that the (i, j)th entry dij of the matrix F ′k(u) is congruent modulo pk to the element

1

hj
(fi(u1, . . . , uj−1, uj + hj, uj+1, . . . , un)− fi(u1, . . . , un)),

where hj ∈ Zp \ {0}, ‖hj‖p ≤ p−N , N is the same number as in 1.3.9. The element dij is called a partial

derivative modulo pk of the function fi with respect to the variable xj at the point u = (u1, . . . , un) and is

denoted

dij =
∂kfi(u)

∂kxj
.

In the special case m = 1, the Jacobi matrix modulo pk is called a differential modulo pk of the function

F , and if, in addition, n = 1, then it is called a derivative modulo pk of the function F . If m = n, then the

determinant det (F ′k(u)) is the Jacobian modulo pk of the function F at the point u. The Jacobian and the
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partial derivative modulo pk of a function at a point are defined with an accuracy to within the equivalence

modulo pk. They will be set equal to the least nonnegative residues of the corresponding numbers modulo

pk and can be regarded as elements of the residue class ring Z/pk . Thus, the Jacobian (partial derivative)

modulo pk of the function F , differentiable modulo pk everywhere in Z(n)
p , is a map from Z(n)

p into Z/pk.

“The laws of differentiation modulo pk” are similar to the corresponding formulas of classical analysis,

with the only difference that they are congruences modulo pk and not equalities.

We shall now give several natural examples of functions which are uniformly differentiable modulo pk.
The operations of the field Qp, namely, addition and multiplication, are trivial since they are uniformly differ-

entiable. The function δi(x), introduced in Sec. 0.1, serves as another example of a uniformly differentiable

function. The derivative of this function is equal to 0 at all points of Zp: δi(x + h) = δi(x) for sufficiently

small h such that ‖h‖p < p−i. Recall that, in the p-adic analysis, functions which are not constant and whose

derivatives are 0 everywhere are called pseudoconstants.
The next example is a function which is no longer uniformly differentiable, but, nevertheless, is uniformly

differentiable modulo p. Let us define on Zp a new operation ⊕p: δi(x ⊕p y) ≡ δi(x) + δi(y) (mod p) for all

i = 0, 1, 2, . . .. Then, for every pair u, v ∈ Zp such that ‖u‖p, ‖v‖p ≤ p−k we have (x+u)⊕p(y+v) ≡ x⊕py+u+v

(mod p1+K), where K ∈ N = {1, 2, 3, . . .}. This means that the function F (x, y) = x ⊕p y is uniformly

differentiable modulo p and
∂1F

∂1x
≡ ∂1F

∂1y
≡ 1 (mod p)

at all points from Z(2)
p . Note that for p = 2 this operation is already familiar to us: in this case F is the

continuation of the operation (command) XOR to Z2.

Let us continue the study of functions that are differentiable modulo pk. It immediately follows from

Definition 1.3.9 that if a function is differentiable modulo pk, then it is differentiable modulo pk−1, pk−2, . . . , p.
Therefore, we shall begin with functions differentiable modulo p. We shall need some new concepts.

1.3.16. Definition. The function F = (f1, . . . , fm): Z(n)
p → Q(m)

p is asymptotically compatible if there exists a

nonnegative rational integer N such that for every k ≥ N the congruence u ≡ v (mod pk) implies F (u) ≡ F (v)

(mod pk) for any u, v ∈ Z(n)
p .

In other words, asymptotically compatible functions are exactly those functions which satisfy the uniform
Lipschitz condition

‖F (u)− F (v)‖p ≤ ‖u− v‖p
for every pair (u, v) of points sufficiently close to one another, i.e., points such that ‖u − v‖p ≤ p−N . Thus,

asymptotically compatible functions are continuous and, hence, uniformly continuous on Zp.

1.3.17. Theorem. If the function F = (f1, . . . , fm): Z(n)
p → Z(m)

p is uniformly differentiable modulo p and

has integer-valued derivatives modulo p at all points from Z(n)
p , then it can be represented as

F (x1, . . . , xn) = P (x1, . . . , xn) + C(x1, . . . , xn),

where P is a periodic function with period pN1(F ) and C is a compatible function. Consequently, F is asymptot-
ically compatible and C is uniformly differentiable modulo p. Asymptotically compatible functions are exactly
those functions which are sums of a compatible function and a periodic function with period primary with
respect to p.

The following proposition shows, in particular, that functions uniformly differentiable modulo pk are

“smooth modulo pk.”

1.3.18. Proposition. If the function F = (f1, . . . , fm): Z(n)
p → Z(m)

p is uniformly differentiable modulo pk,

then every one of its partial derivatives is periodic with period pNk(F ).

Thus, if the function F = (f1, . . . , fm):N(n)
0 → N(m)

0 can be continued to a function uniformly differentiable

modulo pk on Z(n)
p (just as in the preceding examples), then it can be continued on Z(n)

p together with all its
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derivatives modulo pk (and this continuation is unique) since the latter are completely defined by their values

at a finite number of points. When necessary, Proposition 1.3.18 allows us to consider derivatives, Jacobi

matrices, and Jacobians modulo pk as functions on the residue ring Z/pNk(F ).

These results show that the most interesting “component” of a function uniformly differentiable modulo

pk is compatible, and we shall continue to study compatible functions.

Obviously, the function F = (f1, . . . , fm): Z(n)
p → Z(m)

p is compatible if and only if every function fi,

i = 1, 2, . . . ,m, is compatible. Therefore, it suffices to study the functions f(x1, . . . , xn): Z(n)
p → Zp.

For i = 1, 2, . . . , n, we set

∆if(x1, . . . , xn) = f(x1, . . . , xi−1, x1 + 1, xi+1, . . . , xn)− f(x1, . . . , xn)

and then, by induction,

∆s
if = ∆s−1

i (∆if), s = 1, 2, . . . ,

where, by definition, ∆0
i f = f .

The following compatibility criterion is valid.

1.3.19. Proposition. The continuous function f :Z(n)
p → Zp is compatible if and only if the values of each

of the functions 1
i
∆i
jf (j = 1, 2, . . . , n, i = 1, 2, . . .) at all points of Z(n)

p are p-adic integers.

1.3.20. Theorem. The compatible function f : Zp → Zp is differentiable modulo p at the point u ∈ Zp if and

only if there exists N ∈ N such that the congruence

∆if(u)

i
≡ 0 (mod p)

is satisfied for all rational integers i ≥ N . In this case

f ′1(u) ≡
∞∑
t=1

(−1)i−1 ∆if(u)

i
≡
∞∑
t=0

p−1∑
k=1

(−1)i−1 ∆kptf(u)

kpt
(mod p).

1.3.21. Corollary. If the compatible function f : Zp → Zp is differentiable modulo p at the point u ∈ Zp,
then f ′1(u) ∈ Zp.

We can also characterize compatible functions in terms of the “values of digits,” i.e., the functions

δi(f(x1, . . . , xn)).

1.3.22. Proposition. The function f : Z(n)
p → Zp is compatible if and only if for every i = 1, 2, . . . the

function δi(f(x1, . . . , xn)) is independent of δi+k(xs), s = 1, 2, . . . , n, k = 1, 2, . . ..

Let us now generalize somewhat some of our main concepts.

1.3.23. Definition. Let F = (f1, . . . , fm): Z(n)
p → Z(m)

p be an arbitrary function. We say that it is equiprobable

modulo pk if all sets

{(a1, . . . , an) ∈ {0, 1, . . . , pk − 1}(n): F (a1, . . . , an) ≡ ā (mod pk)}
are of the same order for all ā ∈ {0, 1, . . . , pk − 1}(m). We say that F is (asymptotically) equiprobable if it is

equiprobable modulo pk for all (sufficiently large, respectively, i.e., exceeding a certain N) natural k. Similarly,

we say that F asymptotically preserves measure (respectively, is asymptotically ergodic) if the restriction of the

function F (mod pk) (the least nonnegative residue F modulo pk) to the set {0, 1, . . . , pk − 1}(n) is a bijective

(transitive, resp.) mapping for all natural k exceeding a certain N .

In what follows in this section, we shall always assume that F = (f1, . . . , fm): Z(n)
p → Z(m)

p and f : Z(n)
p → Zp

are functions uniformly differentiable modulo p and that the functions f and F have integer-valued derivative
modulo p.

1.3.24. Theorem. Let F = (f1, . . . , fm): Z(n)
p → Z(m)

p be a function uniformly differentiable modulo p with

integer-valued derivatives modulo p. The function F is asymptotically equiprobable if it is equiprobable modulo
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some pk, k ≥ N1(F ) and the rank of the Jacobi matrix F ′1(u) modulo p is m at all points u = (u1, . . . , un) ∈
(Z/pk)(n).

1.3.25. Corollaries. 1◦. Suppose that m = 1 under the conditions of the preceding theorem. The function

F is asymptotically equiprobable if it is equiprobable some modulo pk, k ≥ N1(F ), and its differential d1F

modulo p does not vanish at any point from (Z/pk)(n).

2◦. (cf. [8]). If f(x1, . . . , xn) ∈ Z[x1, . . . , xn], then f is equiprobable if it is equiprobable modulo p and all

its derivatives do not vanish simultaneously at any point from (Z/p)(n).

For m = n, the sufficient conditions given above are also necessary conditions.

1.3.26. Criterion. The function F = (f1, . . . , fm): Z(n)
p → Z(n)

p , which is uniformly differentiable modulo

p and has integer-valued derivatives modulo p, asymptotically preserves measure if and only if it is bijective

modulo pN1(F ) and its Jacobian modulo p does not vanish at any point from (Z/pk)(n), k = N1(F ) (equivalently,

when it is bijective modulo pN1(F )+1).

1.3.27. Corollaries. 1◦. If n = 1 under the conditions of the preceding criterion, then F asymptotically

preserves measure if and only if it is bijective modulo pN1(F ) and its derivative modulo p does not vanish at

any point from {0, 1, . . . , pN1(F ) − 1}.
2◦. (cf. [8, Sec. 4.5]). Let F = (f1, . . . , fm): Z(n)

p → Z(n)
p , where fi(x1, . . . , xn) ∈ Zp[x1, . . . , xn], i =

1, 2, . . . , n. The function F preserves measure if and only if it is bijective modulo p and detF ′(u) 6≡ 0 (mod p)

for all u ∈ {0, 1, . . . , p− 1}(n) (equivalently, when it is bijective modulo p2).

3◦. If A = 〈Zp,Ω〉 is a universal algebra of finite signature Ω and all operations from Ω are uniformly dif-

ferentiable modulo p and have integer-valued derivatives modulo p, then the polynomial f over A asymptotically

preserves measure if and only if it is bijective modulo pk(A), where k(A) = max{N1(ω):ω ∈ Ω}+ 1.

Comparing statements 1.3.24 and 1.3.26, we can pose a natural question of whether the sufficient condi-

tions of Theorem 1.3.24 are also necessary. The answer is in the negative: the function f(x, y) = 2x + y3 on

Z2 is a counterexample, a fact that can be proved using the results of [18].

Let us now begin studying asymptotically ergodic functions in the class of all functions which are uni-
formly differentiable modulo p and have integer-valued derivatives modulo p. It turns out that all functions
of this kind are only of dimension 1.

1.3.28. Theorem. Let F = (f1, . . . , fm): Z(n)
p → Z(n)

p be an asymptotically ergodic function which is

uniformly differentiable modulo p and has integer-valued derivatives modulo p. Then n = 1.
There does not yet exist a full characterization of all asymptotically ergodic functions from the class of all

functions which are uniformly differentiable modulo p and have integer-valued derivatives modulo p. However,
if we impose an additional constraint that the function should be uniformly differentiable modulo p and have

an integer-valued derivative modulo p2, then we can give the following description of these functions.

1.3.29. Criterion. Let f : Zp → Zp be a function uniformly differentiable modulo p2 and having an integer-

valued derivative modulo p2. The function f is asymptotically ergodic if and only if it is transitive modulo

pN2(f)+1 for an odd prime p or modulo pN2(f)+2 for p = 2.

1.3.30. Corollary. Suppose that A = 〈Zp,Ω〉 is a universal algebra of finite signature Ω and all its

operations are uniformly differentiable modulo p2 and have integer-valued derivatives modulo p2. Then we can

effectively indicate a natural k(A) such that the polynomial f(x) ∈ A[x] is asymptotically ergodic if and only

if it is transitive modulo pk(A).
Criterion 1.3.29 reduces the problem of verification of the ergodicity of the function f to the problem

of computing the number N2(f) and verifying the transitivity of f modulo the corresponding power of p.

However, it may turn out to be difficult even to estimate N2(f), and therefore it would pay to indicate, for

the given class K of functions that are uniformly differentiable modulo p2 and have integer-valued derivatives

modulo p2, a certain function ξ(K) such that f would be asymptotically ergodic if and only if it is transitive

modulo pξ(K). This proved to be possible for the class of all compatible integer-valued polynomials over Qp.
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Moreover, the corresponding result is also valid for a wider class A, namely, for all compatible functions

f : Zp → Zp such that the coefficients of their interpolation series decrease not slower than i! (recall that
p

limi→∞ i! = 0). Here is the exact definition of the class A: a function f of the form

f(x) =
∞∑
i=0

ai

(
x

i

)
(∗)

(where ai ∈ Zp, i = 1, 2, . . .) lies in A if and only if it is compatible and ‖ai
i!
‖p ≤ pρ(f), where ρ(f) ∈ N0. The

class A is rather wide: it contains, for instance, all compatible integer-valued functions analytic on Zp, i.e.,

compatible functions f :Zp → Zp which admit of the representation as convergent power series of the form∑∞
i=0 aix

i. It is known (see [22, Chapter 4, Theorem 4, p. 224]) that a function f of the form (∗) is analytic

if and only if
p

limi→∞ ai
i!

= 0. Next we suppose that f ∈ A. We set

λ(f) = min
{
k: 2

pk − 1

p− 1
− k > ρ(f)

}
.

1.3.31. Theorem. The function f ∈ A for p 6= 2, 3 (p = 3 resp.) is ergodic if and only if it is transitive

modulo p (3λ(f)+2 resp.).

Using this theorem, we can verify whether the given integer-valued and compatible polynomial f(x) ∈
Qp[x] is ergodic. (Recall that integer-valued compatible polynomials f(x) ∈ Qp[x] are described by Theo-

rem 1.3.3.) For our purposes, we represent f(x) in the form 1
r
g(x), where r ∈ Zp, g(x) ∈ Zp[x], and at least

one of the coefficients of the polynomial g(x) is not divisible by p. Then ρ(f) = ord pr, and we easily find

λ(f) and verify whether f is transitive on Z/pλ(f)+1 (say, by direct calculations).

We can also apply Theorem 1.3.31 to other classes of the functions f : Zp → Zp. Let us consider, for

example, the formal power series over Zp:

s(x) =
∞∑
i=0

aix
i.

It is known (see [22]) that this series converges for all x such that ‖x‖p < 1. We denote by C(x) the class of

all functions represented by series of this form which also converge for ‖x‖p = 1. In other words, s(x) ∈ C(x)

if and only if
p

limi→∞= 0. In particular, C(x) contains all functions defined by the polynomials from Zp[x].

The class C(z) is a subclass of A and N2(s) ≤ 2 and ρ(s) = 0, i.e., λ(s) = 1 for all s(x) ∈ C(x).

1.3.32. Proposition. The function s(x) ∈ C(x) is ergodic if and only if it is transitive modulo p2 when

p 6= 2, 3, or p3 when p = 2, 3.

1.3.33. Corollaries. 1◦ (M. V. Larin). The polynomial f(x) ∈ Z[x] is ergodic if and only if it is transitive

modulo p2 if p 6= 2, 3 or p3 if p = 2, 3.

2◦. For u(x), g(x) ∈ C(x) the function f : Zp → Zp of the form f(x) = u(x)
1+pg(x)

is ergodic if and only if it

is transitive modulo p2 if p 6= 2, 3 or p3 if p = 2, 3.
Incompatible functions. All preceding statements, beginning with 1.3.24, were proved on the assumption

that the corresponding functions were not only uniformly differentiable modulo a certain pk, but that all its

derivatives modulo pk were integer-valued. By virtue of Theorem 1.3.17, this assumption means the asymptotic
compatibility of these functions. Consequently, all preceding results of this section describe equiprobable or
ergodic functions only in the class of asymptotically compatible functions. However, among the commands
of the processor mentioned above, there is an operation which is not compatible — it is the operation SHL
of a shift toward the lower positions. Its 2-adic continuation is a uniformly differentiable function whose
derivative is no longer integer-valued. This does not mean that the preceding results can be applied only to
the polynomials over the universal algebra

A = 〈Z/2n, {⊕,�,XOR,OR,AND, SHL, SHR}〉,
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into which the operation SHL does not enter (i.e., in other words, only to programs that do not use the

command SHL). However, when we use the tools indicated above in a specific situation, we must make

sure that the polynomial we use satisfies, for instance, the hypothesis of Theorem 1.3.3, i.e., it should be

compatible as a function on Z2. From the point of view of a programmer, this is not quite natural (why

should we choose the law of recursion of a generator of random numbers from the set of functions with

integer-valued derivatives?), and therefore a mathematician faces the problem of trying to understand how

much the requirement of integer-valuedness of the derivative (or asymptotic compatibility) of the function

being studied restricts the class of possible program generators of random numbers. In order to pose the
corresponding mathematical problem, we must return, for some time, to the applied problems mentioned in
the introduction to this work.

Our final aim is to learn to use the enumerated “computer” operations for constructing polynomials
that define the laws of recursion of “good” generators of random numbers, and we have agreed to consider
transitive functions on finite sets to be polynomials of this kind. In this section we considered, in fact, the
following technique of constructing these functions on the set of pn elements with a sufficiently large n: we

take an ergodic function f on the space of p-adic integers which is compatible (or asymptotically compatible)

with all congruences of the ring Zp and consider the map fn = φn(f) of the ring Z/pn into itself induced by

the function f as the required map (see the last subsection of Sec. 0.1). In other words, the required transitive

function on the set Mn = {0, 1, 2, . . . , pn−1} is constructed as the function MOD pn(f |Mn), which associates

every element i ∈ Mn with the least nonnegative residue modulo pn of the value of the function f | Mn

(which, by definition, is the restriction of the function f to the set Mn) at the point i. For asymptotically

compatible f , the maps fn and MOD pn(f |Mn) obviously coincide for all sufficiently large n. Now if we omit

the requirement of the asymptotic compatibility of the function f , then the map MOD pn(f | Mn) may turn

out to be not only intransitive but not even bijective, and the map fn will, generally speaking, be incorrectly

defined. Hence, we need only those functions g: Zp → Zp for which the corresponding maps MOD pn(g | Mn)

are at least bijective for all sufficiently large n. We denote the class of these functions by G(p). Thus, we are

interested in how much the class of all functions uniformly differentiable modulo pk from G(p) is wider than

the class of all functions uniformly differentiable modulo pk whose derivatives modulo pk are integer-valued.

Clearly, all functions from G(p) asymptotically preserve measure. We can show that if the function f ,

which is uniformly differentiable modulo pk, lies in G(p), then the p-adic norm of its derivative modulo pk

at every point from Zp cannot be smaller than 1. The case where this norm is equal to 1 at all points from

N0 (or, what is the same, at all points of Zp) is equivalent to the asymptotic compatibility of the function

f . It is also clear that if h: Zp → Zp is a certain asymptotically compatible and measure-preserving function

and g ∈ G(p), then the function h(g) lies in G(p). The first example of a uniformly differentiable and not

asymptotically compatible function from G(p) was found by A. A. Nechaev: for p = 2, it is the function x2+x
2

.

It turns out that with an accuracy to within the indicated composition with asymptotically compatible and
measure-preserving functions, this example is unique, namely, the following theorem is valid.

1.3.34. Theorem (I. A. Yurov). If f ∈ G(p) is uniformly differentiable modulo some pk, then it is

asymptotically compatible for p 6= 2, and for p = 2 it is either asymptotically compatible or has the form

f = h(x
2+x
2

), where h is asymptotically compatible and preserves measure.

The proof of this theorem uses the methods of non-Archimedean analysis and algebraic geometry and

will be published in the near future. (Already published. See I.A.Yurov,“On p-adic functions which preserve

Haar measure”, Mat. Zametki,63, No.6, 1998, 935-950 - Added by V.S.Anashin to the original text after its

publication.)

Thus, ergodic functions from G(p) such that they are uniformly differentiable modulo some pk, but their

derivatives modulo pk are not integer-valued, can only exist for p = 2; then these functions must have the
form indicated in Theorem 1.3.34. The latter have not yet been described. Moreover, we have no examples
of functions of this kind; neither do we know whether they exist at all.
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Chapter 2

POLYNOMIALS OVER NONCOMMUTATIVE GROUPS WITH
OPERATORS

Beginning the study of uniformly distributed sequences generated by polynomials over noncommutative
groups with multioperators, we must first restrict both the class of the groups under investigation and the
possible systems of multioperators. Just as in the preceding sections, we shall be guided by common sense and
try not to neglect the cases that are most important for applications and, at the same time, not to formulate
problems in the a priori hopeless statement. If, in accordance with these principles, we try to restrict the
class of possible systems of multioperators, then it is reasonable to study now only groups with operators

since applications give some examples of commands which can be interpreted as operators on a group (see the

introduction), and I have no other, more exotic, examples of elementary procedures, performed by processors,

which could be regarded as multioperators on a non-Abelian group.
This means that we shall study equiprobable, measure-preserving, or ergodic functions on the group G

(whose operation is written multiplicatively here and henceforth) in the class of all functions of the form

2.1. w(x1, . . . , xn) = g1(xω1
i1

)n1g2(xω2
i2

)n2 . . . gk(x
ωk
ik

)nkgk+1.

Here g1, . . . , gk+1 are elements of the group G, n1, . . . , nk are rational integers, i1, . . . , ik ∈ {1, 2, . . . , n},
ω1, . . . , ωk are endomorphisms of the group G, and the image of the element h ∈ G under the action of the
endomorphism ω is denoted by hω. For the time being, we shall call functions of the form 2.1 polynomial
functions with operators.

Using common sense, we shall now restrict the class of possible noncommutative group operations. Let
G be the class of all finite groups that admit of ergodic polynomial functions in one variable with operators.
The class G obviously contains all polynomially complete groups, i.e., all finite simple non-Abelian groups

(see Sec. 0.1). In other words, any ergodic function in one variable on a finite simple non-Abelian group can

be represented as a polynomial over this group. Our aim is to find the explicit form of this polynomial. In
the case of a different polynomially complete structure, namely, a finite field, in order to solve this problem in
principle, we used interpolation formulas which allow us to find a polynomial representation for any function on
a finite field. We had to state that the solution obtained was practically unacceptable since the construction of

an interpolation polynomial for high-order fields is impossible in real time (see the corresponding discussion

in Sec. 1.2 of Chapter 1). Arguments of this kind, only in the superlative degree, are also applicable to

polynomials over finite simple non-Abelian groups. By way of example, we must point out that at present
interpolation formulas are only known for one, the smallest, group of this kind, the alternating group A5 of

degree 5 [4, 19]. The length (as an element of the corresponding free product of groups, see Sec. 0.1) of an

ergodic polynomial over A5 presently known is about 104. Recall that A5 contains only 60 elements.
By virtue of what has been said, it is reasonable to exclude from further consideration finite simple

non-Abelian groups. But then, together with them, all non-solvable groups must also be excluded from
consideration.

Indeed, suppose that G is a finite non-solvable group, w(x) is an ergodic polynomial function with

operators on G, N is a completely characteristic subgroup of index k. Then it is easy to see that the function

wk(x) is an ergodic polynomial function with operators on the group N . Furthermore, if K is a completely

27



characteristic subgroup in N , then, by virtue of Proposition 0.1.5, wk(x) induces an ergodic polynomial

function g(x) with operators on the quotient group N/K. Since the group G is non-solvable, there exist fully

invariant subgroups N and K such that the quotient group N/K is isomorphic to the direct power of the

finite simple non-Abelian group H, i.e., N/K ∼= H(m). (The last statement is a well-known fact from the

theory of finite groups.) This means that if we know how to construct ergodic polynomial functions w(x) with

operators on the finite unsolvable group G, then we could also construct an m-dimensional ergodic polynomial
function with operators on the finite simple non-Abelian group H. But the arguments used above show that
the solution of the last problem is impossible for the present, and, hence, all finite groups under investigation
must not contain simple non-Abelian sections, i.e., must be solvable.

Thus, in this part of the work, we restrict our discussion to equiprobable, measure-preserving, or ergodic
functions defined by polynomials over finite solvable groups with operators. True enough, as in the first
chapter of this work, some naturally arising problems will lead us outside of the class of finite groups.

2.1. Equiprobable Polynomial Functions

Just as in the case of polynomial functions on finite commutative rings, before describing the conditions
of equiprobability of a function defined by a polynomial over a solvable group with operators, we must first
learn to differentiate these functions. Let G be a group with a system of operators Ω. Then any polynomial

w(x1, . . . , xn) over G can be represented in the form 2.1, where ω1, . . . , ωk ∈ Ω. The polynomial w(x1, . . . , xn)

is an element of the group G[XΩ] of all polynomials of the set of variables X = {x1, x2, . . .} over the group

G with the system of operators Ω. The group G[XΩ] is a free product of the group G by the free group

F (XΩ) freely generated by the set {xωi : i = 1, 2, . . ., ω ∈ Ω}. Let us consider the semigroup free product of

the group G[XΩ] by a free semigroup freely generated by the elements of the set Ω. We denote by Z〈G,Ω, X〉
a semigroup ring of the above-mentioned semigroup free product over the ring of rational integers Z. The
elements of this semigroup ring can be represented as finite sums

∑
(i) zi

∏
(j) ωjwj , where zi ∈ Z, ωj ∈ Ω,

wj ∈ G[XΩ], i and j run over a finite set of subscripts. By definition, the differentiation with respect to the

variable xi is the mapping
∂

∂xi
: G[XΩ]→ Z〈G,Ω, X〉,

which satisfies the following conditions:

(i) ∂xj
∂xi

= δij is the Kronecker delta;

(ii) ∂g
∂xi

= 0 for any g ∈ G;

(iii)
∂xωj
∂xi

= δijω for any ω ∈ Ω;

(iv) ∂uv
∂xi

= ∂u
∂xi
v + ∂v

∂xi
for any u, v ∈ G[XΩ].

It is easy to verify that these conditions are satisfied by one and only one map. Under this mapping the image
∂f
∂xi

of the polynomial f ∈ G[XΩ] is called the derivative of the polynomial f with respect to the variable xi.

The concept of the derivative of a polynomial over a group with operators is a further generalization of the

concept of the derivative of a free polynomial (i.e., an element of F (X)) put forth by R. Fox [10] and of the

derivative of a polynomial over a group with an empty set of operators introduced by Lausch [20].

The concept of the derivative of a polynomial over a group with operators was introduced for an arbitrary
group with an arbitrary set of operators. We shall assume now that the group G is finite and solvable and
introduce the concept of the value of the derivative of a polynomial over the group G with the system of
operators Ω in a ring of endomorphisms of the principal factor A of the group G. We shall begin with the

case where A is the minimal Ω-invariant (i.e., Aω ⊆ A for any ω ∈ Ω) normal subgroup in G. Since G is

finite and solvable, A is an elementary Abelian p-group for a certain prime p, and therefore the structure

of the vector space of some dimension n over the field Z/p is defined in the natural way on A. We denote
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by E(A) the ring of all endomorphisms of the group A, and then we can regard E(A) as the ring of all

n × n matrices over Z/p. We associate every element g ∈ G with the element πA(g) ∈ E(A), which is an

automorphism induced on the subgroup A by means of conjugation with the aid of the element g. Similarly,

for every ω ∈ Ω we denote by ρA(ω) the endomorphism of the subgroup A induced on it by the action of the

operator ω. Let h = (h1, . . . , hn) be an arbitrary collection of n elements from G. There exists one and only

one homomorphism τA,h of the ring Z〈G,Ω, X〉 in the ring E(A) such that τA,h(g) = πA(g) for every g ∈ G,

τA,h(ω) = ρA(ω), and τA,h(x
ω
i ) = hωi for all ω ∈ Ω, i = 1, 2, . . . , n. If w(x1, . . . , xn) is a polynomial of the form

2.1, then the endomorphism

∂Aw(h1, . . . , hn)

∂Axi
= τA,h

(∂w(x1, . . . , xn)

∂xi

)
∈ E(A)

is the value of the derivative of the polynomial w with respect to the variable xi at the point (h1, . . . , hn) in

the ring E(A). The relation

w(h1a1, . . . , hnan) = w(h1, . . . , hn)a
( ∂Aw(h1,...,hn)

∂Ax1
)

1 . . . a
( ∂Aw(h1,...,hn)

∂Axn
)

n

is valid, where h1, . . . , hn ∈ G, a1, . . . , an ∈ A. Note that here the elements from A play the part of “small
increments of the arguments,” and the relation itself is an analog of the formula from classical differential
calculus. In the same way, we define the value of the derivative in the ring of endomorphisms of a certain
principal factor of the group G. Recall that the principal factor of the group G with the system of operators

Ω is, by definition, any quotient group H/K, where H and K are normal Ω-invariant subgroups in G, H ⊇ K,

H 6= K, and there is no normal Ω-invariant subgroup S in G such that H ⊇ S ⊇ K, H 6= S, S 6= K. All
principal factors of a finite solvable group are elementary Abelian p-groups in some prime p, and therefore
the values of the derivatives in the rings of endomorphisms of the principal factors can also be regarded as
matrices over the corresponding finite fields of prime orders. The analog of the above-mentioned “formula of

small increments” is valid in this case with an accuracy to within some factor from K (i.e., the analog of an

“infinitely small term” from the classical formula) or, in other words, is no longer an equality but a congruence

modulo K. In general, the situation concerning differential calculus for finite solvable groups is similar, in
many important details, with the situation for the case of finite commutative rings. First and foremost, it

concerns the “small increments formula,” which makes it possible, just as for finite rings, to use induction (in

this case on the length of the principal series) for proving the criteria of equiprobability of polynomial maps.

It should be pointed out, however, that since the “derivative of the product” is asymmetric with respect to

the cofactors for the case of polynomials over a group (see (iv)), the analogs of the “differentiation formulas”

already differ essentially from their classical prototypes. For instance, ∂xn

∂x
= 1 + x + . . . + xn−1 for positive

integers n.
It should also be pointed out that differential calculus on groups becomes noticeably simpler in one special

case, namely, for finite nilpotent groups with an empty set of operators. Since all factors of the principal

series of a finite nilpotent group are central (i.e., H/K lies at the center of the quotient group G/K) and are

prime-order groups, the value of the derivative of polynomial 2.1 with respect to the ith variable at any point
in the ring of endomorphisms of any principal factor is compatible modulo the corresponding prime number
p with

deg iw(x1, . . . , xn) =
∑
ij=i

nj,

i.e., with the degree of the polynomial w(x1, . . . , xn) with respect to the variable xi. The following criterion of

the equiprobability of a polynomial mapping on a finite solvable group with operators is valid. For simplicity,
we shall formulate this criterion only for the case of polynomials in one variable.

2.1.1. Proposition. The polynomial w(x) in the variable x over the finite solvable group G with the system

of operators Ω is bijective on G (i.e., preserves measure) if and only if every matrix ∂Aw(g)
∂Axi

is nonsingular,
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being a matrix over the corresponding finite prime-order field for any principal factor F of the group G and
any element g ∈ G.

This proposition is a trivial generalization of the result of Lausch [20], proved by him for Ω = ∅, to

the case of a nonempty system of operators Ω. The corresponding result for nilpotent groups with Ω = ∅ is
especially simple.

2.1.2. Corollary (see [21]). If G is a finite nilpotent group (with an empty system of operators), then the

polynomial w(x) in one variable x over it is bijective on G if and only if its degree is coprime with the order

of the group.

2.2. Ergodic Polynomial Functions

Let us now cope with the problem of characterization of finite solvable groups with operators which admit
of ergodic polynomial mappings. Here the multidimensional case is even simpler than the corresponding analog
for finite commutative rings.
2.2.1. Proposition. If the finite solvable group G with the system of operators Ω admits of the ergodic

polynomial mapping F = (f1, . . . , fn):G(n) → G(n), then either n = 1 or n = 2, and |G| = 2.

The proof of this proposition is rather simple and makes it possible to demonstrate some general ideas,
and therefore we shall give it here.

Suppose that N is a minimal nontrivial normal Ω-invariant subgroup in G (then N is an elementary

Abelian p-group for some prime p) and let m be the index of N in G. If m = 1, then we are in the situation

of Sec. 1.1 of this work, i.e., F is an affine transformation of the Abelian group G(n), and, in accordance with

Theorem 1.1.1, the only possibilities are either n = 1 and G is a cyclic group of order p, or n = 2 and G(2) is

a Klein group, i.e., |G| = 2.

Let m 6= 1, i.e., N be a proper subgroup. The restriction of the transformation of F nm to the subgroup

N (n) is a transitive transformation of the subgroup N (n). Since N is Abelian, it follows from the “small

increments formula” given above that this restriction of the transformation F nm to the subgroup N (n) has the

form u 7→ auξ (u ∈ N (n)), where a ∈ N (n), ξ ∈ E(N (n)). Therefore, for n ≥ 2 it follows from Theorem 1.1.1

that the only case that is possible is where n = 2 and |N | = 2. However, since N is normal and Ω-invariant,

it follows from the condition |N | = 2 that N lies at the center of the group G and either aω = a or aω = 1 for

any ω ∈ Ω, a ∈ N . Therefore, if w(x1, . . . , xn) is represented as 2.1, then, for any a1, . . . , an ∈ N , we have

w(a1, . . . , an) = h(w)a
d1(w)
1 . . . adn(w)

n ,

where h(w) = g1 . . . gk+1, di(w) is the least nonnegative residue modulo 2 of the integer∑
is=i, Nωs=N

ns.

Let us associate the map F = (f1, f2) with the 2 × 2 matrix D = (dij) over the field GF (2), where

dij = dj(fi), i, j ∈ {1, 2}. Then D induces the endomorphism δ of the subgroup N (2) and

F (a, b) = h · (a, b)δ

for any a, b ∈ N , (a, b) ∈ N (2), h ∈ G(2). It follows from the last relation that for all a, b ∈ N we have

F 2m(a, b) = g · (a, b)δ2m

for a suitable g ∈ G(2), with g being independent of a, b. On the other hand, as was shown above, F 2m is a

transitive transformation of the subgroup N (2), and, hence, g ∈ N (2). Since N (2) is an elementary Abelian

group of type (2.2), it follows from 1.1.2 that the endomorphism δ2m must be a nontrivial involution in the
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group of automorphisms of the group N (2). However, the algebra of all endomorphisms of the group N (2) is

isomorphic to the algebra L2(2) of all 2× 2 matrices over the field GF (2) and the group of all automorphisms

of the group N (2) is isomorphic to the complete linear group GL 2(2) of dimension 2 over GF (2), which, in

turn, is isomorphic to a symmetric group of degree 3. It is easy to show now that no even degree of any

element of the group L2(2) and, in particular, δ2m, can be a nontrivial involution. The contradiction obtained

shows that for m 6= 1 only n = 1 is possible, and this completes the proof of the proposition.
Thus, when we characterize finite solvable groups with operators, which admit of ergodic polynomial

functions, we can restrict our discussion to the case of polynomials in one variable. However, we must first
impose some more constraints on the system of operators.

Clearly, the existence of a transitive polynomial over a certain group G with the system of operators
Ω not only restricts the possible structure of the group G, but also imposes certain constraints on Ω. A
transitive polynomial can exist for the given group G with one system of operators and cannot exist for the

group G with some other system of operators. The Klein group K4 (an elementary Abelian group of type

(2.2)) can serve as an example: if we take the whole group AutK4 of automorphisms of the group K4 as Ω,

then such a polynomial exists, but if we take as Ω the set of all automorphisms of order 3, then the group

K4 with this system of operators does not admit of an ergodic polynomial function (see 1.1.2). Therefore,

in order to characterize all finite solvable groups with operators that admit of ergodic polynomial functions,
it is reasonable to do the following. We should first try to find the description of all finite solvable groups
G that admit of ergodic polynomial functions and possess the maximal system of operators Ω, i.e., a system
such that any endomorphism of the group G can be induced by a certain operator from Ω, or, to put it

otherwise, Ω = E(G), where E(G) is the set of all endomorphisms of the group G. Then we should describe

all ergodic polynomials over each of the finite solvable groups G with the system of operators Ω = E(G)

and, in particular, for every ergodic polynomial w to obtain a list E(w) of endomorphisms entering into its

canonical form. Then the final formulation of the corresponding classification theorem will be as follows: the
finite solvable group G with the system of operators Ω admits of an ergodic polynomial function if and only

if G admits of an ergodic polynomial function being regarded as a group with the system of operators E(G)

and Ω induces on G all endomorphisms from E(w) for a certain ergodic polynomial w over the group G with

the system of operators E(G). Although the corresponding classification theorem has not yet been proved,

the ways of proving it are sufficiently clear, and we shall show, in what follows, a certain possible approach
to obtaining this classification. As we see, the essential part of the proof must consist of the classification

of finite solvable groups G with the system of operators E(G) that admit of ergodic polynomials. Such a

theorem has already been proved, and below we give the classification of all finite solvable groups G with the

system of operators Ω, which admit of ergodic polynomials, for the cases Ω = ∅, Ω = AutG, and Ω = E(G).

We denote by C0, CA, and CE, respectively, the class of all finite solvable groups with the system of operators

Ω = ∅, Ω = AutG, and Ω = E(G) which admit of ergodic polynomial functions. Clearly, C0 ⊆ CA ⊆ CE. The

following theorem describes nilpotent groups from these classes.

2.2.2. Theorem ([2]). A finite nilpotent group lies in CE if and only if it is either trivial or isomorphic to

one of the following groups:

(1) to the cyclic group C(m) of order m;

(2) to the group Dk
n = gp (u, v ‖ v2n = 1, vu = v−1, u2 = v2k), where n = 1, 2, 3, . . ., and k ∈ {n, n − 1}

for n > 1 and k = 1 for n = 1;

(3) to the group SDn = gp (u, v ‖ u2 = v2n = 1, vu = v2n−1−1), where n = 3, 4, 5, . . .;

(4) to the direct product H × C(m), where H ∈ {Dk
n, SDn} and m is odd.

Out of these groups, the groups SDn and SDn × C(m) with an odd m, and only these groups, do not lie

in CA. Finally, the class C0 consists exactly of all groups C(m), m = 2, 3, 4, . . ..

Note that D1
1 = K4 is Klein’s group, D1

2 is a group of quaternions 8, Dn−1
n is a generalized group of

quaternions, Dn
n is a dihedral group of order 2n+1, and SDn is a semidihedral group.

In order to formulate the corresponding theorem for solvable groups, we shall need the following groups
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in their representations by the generators and relations or in the form of the semidirect products

M(m, k, s) = gp (c, d ‖ cm = dk = 1, dc = ds),

where m, k = 2, 3, 4, . . ., s 6≡ 1 (mod k), sm = 1 (mod k), m and k are coprime,

A(r) = gp (b, u, v ‖ b3r = u2 = v2 = 1, uv = vu, ub = v, vb = uv) = K4 h C(3r)

is a semidirect product of a Klein group by a cyclic group of order 3r, r = 1, 2, 3, . . .,

S(r) = gp (a ‖ a2 = 1) h A(r),

where ba = a−1, ua = u, va = uv, r = 1, 2, 3, . . .,

H(r) = D1
2 h C(3r),

where ba = a−1, ua = u, va = uv, r = 1, 2, 3, . . .,

Q1(r) = H(r) h gp (a ‖ a2 = 1),

where ba = a−1, ua = u, va = uv, r = 1, 2, 3, . . .,

Q2(r) = gp (a, b, u, v ‖ b3r = v4 = 1),

where ba = b−1, ua = u−1, va = uv, ub = vu = v−1, vb = uv−1, a2 = u2 = v2, r = 1, 2, . . ..

2.2.3. Theorem ([2]). A finite solvable group lies in CE if and only if it is either trivial or isomorphic

to one of the following groups: (1) C(m), (2) M(m, k, s), (3) Dk
n, (4) SDn, (5) A(r), (6) H(r), (7) S(r), (8)

Q1(r), (9) Q2(r), (10) BλA, where the orders of the groups A and B are coprime, A is any group of type

(3)–(9), B is any group of type (1)–(2). Out of these groups, the following groups lie exactly in CA: all groups

which are isomorphic to any group of type (1)–(3), (5)–(9) and all groups which are isomorphic to certain

groups of type (10), namely, to groups in which: (11) the semidirect factor A is any group of type (3), (5)–(9)

and the semidirect factor B is any group of type (1)–(2), all elements from A commuting with all elements

from B, (12) A = Dk
n, B is any group of type (1)–(2), the element v ∈ Dk

n commuting with all elements from

B and the automorphism of the subgroup B, induced on it by means of conjugation with the aid of the element

u ∈ Dk
n, having order 2, (13) A is any group of type (7)–(9), B is any group of type (1)–(2). Finally, out of

these groups, exactly all groups which are isomorphic to any group of type (1)–(2), (7)–(9), (13) lie in C0.

Although the proof of these two theorems is constructive in the sense that the belonging of each of the
enumerated groups to the class C0, CA, CE is proved by constructing a corresponding polynomial, the general
problem of describing all ergodic polynomials over finite solvable groups with operators is far from being
solved. However, we see the ways that may lead to its solution, and here is one of them which is of interest,
since it actually reduces the problem to the field of non-Archimedean analysis.

It should first be pointed out that except for a small number, all groups indicated in Theorems 2.2.2 and
2.2.3 can be combined into series that form spectra. For instance, the series of dihedral groups of orders 2r,
r = 4, 5, 6, . . ., form the spectrum

. . .
φn+1−→ Dn

n

φn−→ Dn−1
n−1

φn−1−→ . . .
φ4−→ D3

3.

Here φn is an epimorphism whose kernel is a subgroup of order 2 generated by the element v2n−1
of the

group Dn
n. This kernel is a fully invariant subgroup in Dn

n, and therefore the epimorphism φn induces the

homomorphism φ̄n of the semigroup E(Dn
n) of all endomorphisms of the dihedral group Dn

n. We can show that

this homomorphism is, in fact, an epimorphism. Now we fix a certain group of operators Ω, i.e., define the

mappings ψn: Ω→ E(Dn
n) such that each of the following diagrams is commutative:
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Ω
ψn

E(Dn
n)

↓ φ̄n
E(Dn−1

n−1)

ψn−1

Thus, the spectrum of dihedral groups given above can be regarded as a spectrum of groups with the system
of operators Ω. The inverse limit of this spectrum D∞ is a pro-2-group which is a semidirect product of the

additive group Z+
2 of 2-adic integers by a cyclic group of order 2. We denote by φ̃n a natural epimorphism

of the projection of the inverse limit D∞ to the nth group Dn
n of this spectrum. Now we can put every

polynomial function f on the dihedral group Dn
n into correspondence with the polynomial function f̃ on the

group D∞, such that the functions f and φ̃n(f̃) on the group Dn
n coincide. The idea of describing ergodic

polynomial functions on the group Dn
n is similar to that used for describing ergodic polynomials over the

rings of residues Z/2n, which also form a spectrum, whose inverse limit is a ring of 2-adic integers Z2 and the

part of the epimorphism of projecting φ̃n is played by the epimorphism of reduction modulo 2n, namely, we

describe (asymptotically) ergodic polynomial functions on the group D∞, and this last problem reduces to

the description of ergodic functions of a special kind on the space of 2-adic integers.

Indeed, the group D∞ contains a fully invariant subgroup N = (2Z2)+, which is an additive group of the

ideal of all even 2-adic numbers. It is obvious that D∞/N ∼= K4. The polynomial w(x) ∈ D∞[x] is ergodic

if and only if it is ergodic modulo subgroup N and the polynomial w(4)(x) is ergodic as a function on N .

But the polynomial w(x) is ergodic modulo N if and only if it induces a transitive affine transformation of

the Klein group K4; this situation is completely described by Theorem 1.1.2, and it only remains to study

the conditions of ergodicity of the polynomial w(4)(x) on N . However, since N is an Abelian fully invariant

subgroup in D∞, it follows, by virtue of the “small increments formula” and the fact that all subgroups of

the form (2iZ2)+ are also Abelian fully invariant subgroups, that this last problem reduces to the problem for

compatible 2-adic functions. Indeed, the subgroup N is isomorphic to the additive group Z+
2 of the ring of

2-adic integers, and, with an accuracy to within this isomorphism, the polynomial w(4)(x) can be regarded as

a compatible 2-adic function. The criteria of ergodicity of these functions are formulated in Sec. 1.3 of this
work.

The same arguments can be used for the other series of groups (i.e., for other spectra) enumerated in

Theorems 2.2.2 and 2.2.3, since the inverse limits of these spectra also contain fully invariant Abelian pro-p-

groups and the corresponding quotient groups are sufficiently “small” (we can show that they are isomorphic

to the symmetric groups of degrees 2, 3, or 4 or to the group of quaternions of order 8). Thus, the problem of

describing ergodic polynomials over these groups reduces to describing ergodic polynomials over the above-
mentioned “small” finite groups and to describing ergodic polynomials over Abelian pro-p-groups and, by
virtue of what was stated, this problem does not seem to be hopeless, although it will require considerable
efforts. Moreover, sufficiently complicated problems may arise that are connected with the description of the
mixed identities of groups. We spoke about this in the introduction. These problems are considered in the
last section of this work.

2.3. Mixed Identities of Groups

From this section, the reader will get some general idea of the problems which we encounter when describ-
ing mixed identities of a specific group. The problem of describing mixed identities, in turn, is subordinate to
the problem of describing polynomial ergodic or equiprobable functions on a group, and therefore a detailed
introduction to the theory of mixed identities of groups would divert us from the theme of this work. For this

description we refer the reader to [3], where the fundamentals of the theory of mixed identities and mixed

varieties of groups are given, as well as some bibliography concerning these themes. Because of the same
considerations, we do not discuss mixed identities of groups with an arbitrary system of operators but restrict

the discussion to mixed identities of groups (i.e., to the case of an empty system of operators).
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Thus, our aim is to describe all mixed identities of a certain group G, i.e., all polynomials over G of the
form

w(x1, . . . , xn) = g1x
n1
i1 g2x

n2
i2 . . . gkx

nk
ik
gk+1

(where g1, . . . , gk+1 are elements of the group G, n1, . . . , nk are rational integers, i1, . . . , ik ∈ {1, 2, . . . , n})
that assume the value 1 for any values of the variables x1, . . . , xn in the group G. The collection of all mixed

identities in the set of variables X = {x1, . . . , xn, . . .} is a normal subgroup IG[X] in the group G[X] of all

polynomials of the set of variables X over G. We can show that IG[X] is a free subgroup in the free product

G[X]. It is also obvious that IG[X] is closed with respect to any replacement of variables by polynomials

from G[X], i.e., w(x1, . . . , xn) ∈ IG[X], u1, . . . , un ∈ G[X] implies w(u1, . . . , un) ∈ IG[X]. We call the set

W ⊆ IG[X] the basis of mixed identities in the group G if all elements from IG[X] can be obtained from

the elements of the set W by means of the operations of multiplication, transition to the inverse element,

conjugation by means of elements from G[X], and replacement of variables by elements from G[X]. To

describe all mixed identities of the group G means to indicate certain of their bases.

It is known that to describe identities of some group (i.e., in our terminology, polynomials over a group

all of whose coefficients are equal to 1 and which assume the value 1 for any values of the variables in this

group), it is convenient to consider the varieties of the groups, namely, the classes of all groups which satisfy

some system of identities (see [12]). We must act in a similar way when we describe mixed identities of groups.

We shall need some new concepts, in particular, the concept of a mixed variety of groups.

Suppose that Y = {yα:α ∈ I} is an alphabet of a certain power, X = {x1, . . . , xn, . . .} is some alphabet

such that X ∩Y = ∅, whose elements are called variables, F (X ∪Y ) is a free group with the free base X ∪Y ,

M is a certain subset in F (X ∪ Y ). A mixed variety generated by the set M is the class of all groups H for

each of which we can define the mapping ϕ:Y → H such that Mϕ̃ ⊆ IH [X], where ϕ̃ is a homomorphism of

the group F (X ∪ Y ) into the group H[X] induced by the mapping ϕ, i.e., xiϕ̃ = xi, yαϕ̃ = yαϕ for all α ∈ I
and all i = 1, 2, . . .. Note that when I = ∅ this definition turns into the definition of the variety of groups
generated by the set of identities M.

Moreover, for the given group G we denote by mvar G the class of all groups H such that there exists a

homomorphism ϕ:G→ H for which IG[X]ϕ̃ ⊆ IH [X], where ϕ̃:G[X]→ H[X] is an induced homomorphism

of groups of polynomials, i.e., xiϕ̃ = xi, gϕ̃ = gϕ for all i = 1, 2, . . . and all g ∈ G. The following statement

is valid: for any group G the class mvar G is a mixed variety of groups (called a mixed variety generated by

the group G), and any mixed variety is generated by certain of its groups.

By and large, when describing mixed identities of a group, we have to use methods similar to those
of the theory of varieties of groups, namely, describe mixed identities of some “simple” objects and employ
them to construct more complicated objects by means of various group-theoretic operators and then obtain
mixed identities of these complicated objects as compositions of the mixed identities of the “constituents.”
In the theory of varieties of groups, methods of this kind have Birkhoff’s theorem as their source, which, in
particular, states that every variety of groups is closed relative to the transition operators from a group to
a subgroup, from a group to a quotient group, and from a system of groups to their Cartesian product. A

similar (but weaker) statement is valid for mixed varieties of groups: it turns out that any mixed variety of

groups is closed relative to the operator Q of transition from a group to a quotient group, the operator C of
transition from a system of groups to their Cartesian product, and the operator Cd of transition from the
group G to all subgroups, containing a diagonal, of all Cartesian degrees of the group G, and C = QCdH for
any group H which generates C.

A natural assumption arises that as the basis of mixed identities of the group G we can take their
identities, which, in principle, could be described at least for groups indicated in Theorems 2.2.2 and 2.2.3
by means of the developed apparatus of the theory of varieties of groups. The exact formulation of this

assumption reads as follows: if G is the basis of the identities of the group G, then IG[X] coincides with the

verbal subgroup G(G[X]) generated in G[X] by the system G. This statement is valid for the Abelian group

G. Unfortunately, in the general case this assumption is incorrect: as is shown in [3], if the finite group G is

not nilpotent, then mvar G is not a variety of groups and, in particular, IG[X] 6= G(G[X]). Moreover, even
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if mvar G is a variety of groups (i.e., mvar G = varG), this does not mean that IG[X] = G(G[X]). Finally,

already among nilpotent groups of degree 2, there are examples of groups G for which IG[X] 6= G(G[X]).

All these circumstances suggest that the problem of describing mixed identities of groups from Theorems

2.2.2 and 2.2.3 may turn out to be not so simple, although the methods developed in [3] give grounds to believe

that this description can be obtained in the final analysis. In particular, this statement is substantiated by
the following result: mixed identities of a finite nilpotent or metabelian group have a finite basis.
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18. H. K. Kaiser and W. Nöbauer, “Permutation polynomials in several variables over residue class rings,”

J. Austral. Math. Soc., A43, No. 2, 171–175 (1987).

19. H. Lausch, “Interpolation on the alternating group A5,” in: Contrib. Gen. Algebra. Proc. Klangenfurt

Conf. 1978, J. Heyn, Klangenfurt (1979), pp. 187–192.

20. H. Lausch, “Zur Theorie der Polynompermutationen über endlichen Gruppen,” Arch. Math., 19, No. 3,

284–288 (1968).

21. H. Lausch and W. Nöbauer, Algebra of Polynomials, North-Holland, Amsterdam–London (1973).

22. K. Mahler, p-Adic Numbers and Their Functions, 2nd ed. Cambridge Univ. Press (1981).

23. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, New York (1974).

24. H. Niederreiter, “Nonlinear methods for pseudorandom number and vector generation,” Lect. Notes

Econ. Math. Syst., 145–153 (1992).

25. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia,

Ch. 8 (1992).

36


